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Abstract 
Analog to Digital Converter (ADC) is the world’s largest 

volume mixed-signal circuit. It is also a key building block in 

nearly all system on chip (SoC) solutions involving analog and 

mixed-signal functionalities. ADC testing is also crucial for built-

in-self-test (BIST) solutions of AMS testing in SoC technology 

which is identified by the ITRS as one of four most daunting SoC 

challenges. ADC spectral testing is of critical importance to a large 

class of integrated circuits and is particularly challenging for high 

speed and/or high resolutions circuits. In this paper we use 

Spectrally Related Excitations (SRE) to accurately test the spectral 

performance of ADCs. Unlike standard approaches, the SRE 

approach uses low-cost imprecise sine signals as input to the ADC 

and uses the spectral relationship between multiple input signals to 

separate distortion inherent in the ADC from that in the input.  

Efficient DSP algorithms are used to determine the true spectral 

performance of the ADC. This approach works in both production 

test and BIST environments. Simulation results show two sine 

waves with < 60 dB purity can be used to accurately test spectral 

performance of high resolution ADCs with SFDR in excess of 100 

dB. The low-cost SRE signals can be readily generated with simple 

RC filters with lax band edge requirements. Extensive simulation 

shows that the algorithm is robust to filter errors, to nonstationarity 

in the test environment, and to measurement noise. 

1. Introduction 
As the world’s leading volume mixed-signal circuit, ADC 

testing represents one of the most challenging AMS testing tasks.  

Parametric specifications such as DNL and INL measure the 

ADC’s static performance and are critically important to 

instrumentation applications, medical applications, image 

processing, and so on, in which accuracy of each converted code is 

of major concern. Production test of static linearity of high 

resolution ADCs is challenging and costly due to long test times 

per unit and large investments in commercial mixed-signal testers. 

Furthermore, as the industry integrates increasingly more 

functionalities into a single chip, analog and mixed-signal 

components become deeply embedded and testing access becomes 

increasingly difficult. Built-in-self-test solutions of AMS testing 

become critical in solving ITRS’s one of the four “most daunting 

SoC challenges.” [1] As the most fundamental building block, cost 

effective testing of ADC plays a key role. 

 Many attempts have been made to provide built-in-self-test 

(BIST) solutions to ADC linearity testing to reduce costs associated 

with using testers and to enable testing of deeply embedded SoCs.  

Excellent examples include the work of Roberts, Azais, Sanchez, 

and many others [e.g. 2-7]. Invariably, their approaches have been 

aimed at replicating a standard tester on a chip. Unfortunately, 

these approaches have found little industrial adoption. A 

fundamental problem with these approaches is their need for a 

highly accurate signal to stimulate the DUT.   Requirements for the 

stimulus input are typically substantially more precise than those of 

the DUT making the signal generator more challenging to design 

than the DUT itself and raising the question of whether a test 

circuit is also needed for the signal generator!  Recently, the 

authors’ group developed a new approach for ADC static linearity 

testing in which two functionally related easy-to-generate signals 

are used to accurately characterize the ADC.  The approach was 

validated by extensive simulation and experimental results obtained 

in industry in which 7 bit linear signals were used to test a 16 bit 

ADC achieving comparable results to those obtained by a state-of-

the-art mixed-signal tester with 20 bit linear ramp signals. [8, 9] 

In many applications, spectral measures such as SFDR, 

SINAD, THD, IMD, SNR, etc. that characterize the dynamic 

performance of the ADC are of critical importance. Both the static 

errors and dynamic errors degrade spectral performance.  Dynamic 

errors refer to the additional sources of error introduced by the time 

variation of the analog signal being sampled. Sources include 

harmonic distortion from the analog input stages, signal-dependent 

variations in the time of samples, dynamic effects in amplifiers and 

comparators, and frequency-dependent variations in threshold 

levels. The discrete Fourier transform (DFT) is used extensively for 

frequency domain analysis and is the prevalent technique used for 

spectral performance testing. [10-12] According to the IEEE 

standard on ADC testing, input sine wave signals must have 

spectral purity far exceeding the targeted performance of the ADC 

under test. This is because practical sine waves contain harmonic 

distortion components that corrupt the ADC output. To ensure 

testing accuracy, standard approaches require input sine signals to 

be at least 10 times or 3 bits more accurate than the ADC under 

test. For example, if ADCs with targeted 16-bit SFDR performance 

are to be tested, the input sine wave signal should have its largest 

harmonic distortion component at the –118 dB level or lower. Such 

high purity sine waves are very challenging to obtain and are 

virtually impossible in a built-in-self-test environment.  

In this paper, we introduce a new spectral testing technology 

that uses two low-cost Spectrally Related Excitations (SRE) to 

accurately determine the spectral performance of ADCs. Section 2 

describes the SRE approach and shows how two imprecise sine 

inputs with spectral relationship can be used to separate the 

distortion inherent in the ADC from that in the input and determine 

the true spectral performance of the ADC. Section 3 provides 

simulation results showing that two < 60-dB-pure sine waves can 

be used to accurately test spectral performance of high resolution 

ADCs with SFDR in excess of 100 dB. Extensive simulation also 

shows that the SRE approach is robust to filter errors, to 

nonstationarity in the test environment, and to measurement noise. 

2. Accurate spectral testing with imprecise sine inputs 
An ADC is a device that converts a continuous time signal x(t)  

into a discrete-time quantized-amplitude signal y(t). In the ideal 

case, y(t) will only differ from x(t) by a quantization error Q(t) 

which is bounded by FS/2n where FS is the full scale range of the 

ADC input and 2n is the total number of quantization levels of an n-

bit ADC. However, due to unavoidable errors in the manufacturing 

of the device, an actual ADC will have y(t) deviate from its desired 

values, causing the ADC’s behavior to be nonlinear.  

In the frequency domain, the ADC linearity is measured with 
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several spectral specifications. Let the ADC input x(t) be a pure 

sine wave. The ADC output y(t) ideally should be a pure sine wave. 

However, static and dynamic non-idealities of the ADC will cause 

y(t) to differ from a pure sine wave. The spectral contents of y(t), 

denoted as Y(f), should be ideally a spectral line at the input signal 

frequency, but nonlinearities of the ADC will cause spectral lines to 

appear at harmonics frequencies in the output spectrum. The 

spectral values at these harmonic frequencies measure the amount 

of nonlinearity in the ADC and are called harmonic distortion.  

Total harmonic distortion (THD) measures the total power of all 

the harmonic distortion components divided by the intended signal 

(or the first harmonic) power. Spectral lines persistent at 

frequencies other than the harmonic frequencies are spurious 

distortion components. The spurious-free dynamic range (SFDR) of 

an ADC measures the ratio of the output signal amplitude to the 

amplitude of the largest harmonic or spurious spectral component 

observed over the full Nyquist band. Both THD and SFDR are 

typically expressed in decibels (dB). 

As defined above, x(t) = sin( t)  is periodic, the steady state 

output y(t) is also periodic and admits a Fourier series 

representation.  Suppose the input sine wave and the ADC’s clock 

have been synchronized and the ADC’s gain error has been 

corrected, then the output y(t) can be expressed as: 
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where the ai and bi are the Fourier coefficients of y(t) and they are 

assumed to be much less than 1 in magnitude. The THD and SFDR 

of an ADC can be calculated by ai, bi as:  
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Straightforward trigonometric manipulation will lead us to: 
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To avoid unnecessary algebraic complication, higher order terms 

are not carried in the equations.  Since sin( t) = x(t) in Equation 

(3), y(t) can be expressed as a function of )(tx  as follows: 
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This equation forms the bases for us to develop the mentioned key 

relationships among the distortion components of the ADC and its 

input/output signals in the SRE approach. First let us feed an 

imprecise sinusoidal signal x1(t) to the ADC input and denote the 

corresponding ADC output steady state response by y1(t). Since 

x1(t) is imprecise, it is no longer a pure sine wave.  Instead it is a 

periodic signal with higher order harmonic distortions. Suppose we 

can scale the magnitude and synchronize the phase of the input 

signal, we can assume, without loss of generality, that x1(t) has the 

following Fourier Series form: 
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where | i|, | i| <<1 describe the harmonic distortion components of 

the imprecise input sine wave. They are assumed to be much less 

than 1 since sine waves with about 0.1% distortion are relatively 

easy to generate in practice. 

The ADC’s output response will have distortions that are the 

combined effect of the input distortion and the ADC’s harmonic 

distortion. Nevertheless, y1(t) is also going to be a periodic signal. 

Substituting x by x1(t) in Equation (4) and neglecting all terms with 

higher order products of ai, bi , i, and i, it can be shown after 

lengthy trigonometric algebra that y1(t) has the following Fourier 

Series representation: 
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which is surprisingly simple but very intuitive. Here again, we 

have, without loss of generality, assumed that the ADC’s gain error 

and offset error have been corrected. Otherwise, a simple scaling 

and DC shift will be needed. The DC component will not affect the 

computation of the spectral lines at nonzero frequencies. The 

scaling factor due to gain error will not affect the computation of 

the spectral specifications since these specifications are computed 

with a normalized first harmonic.  

If a coherent data record of the output y1(t) is obtained, it can 

be transformed into the spectral domain via FFT to get Y1(f). Let 

harmonicthiiy fYh |)(11
   (7) 

where hy1i is the spectral line at the i-th harmonic of y1(t). From 

Equations (6) and (7) and relationship between Fourier Series and 

Fourier Transform, we can be obtain: 

iallforhajb iyiiii 12)(   (8) 

From Equation (8), we can get the relationships between 

harmonic distortion components of the input imprecise sine wave 

x1(t), those of the ADC’s steady state output response y1(t), and the 

ADC’s harmonic distortion as defined with a pure sine wave 

stimulus, namely: 

iallforhhh iADCixiy 11
  (9) 

Therefore, if the input harmonics can be identified, the following 

equation can be used to identify the ADC’s harmonic distortion. 

iallforhhh ixiyiADB 11
  (10) 

To facilitate the isolation and identification of the input 

harmonic distortion and the ADC harmonic distortion, we generate 

a second signal x2(t) by passing x1(t) through a simple low pass 

filter as depicted in Figure 1 where SF is a scaling factor. 

        )(1 tx                              )(tx f
                               )(2 tx

Figure 1. Diagram of how x1(t) is generated 

For simplicity, the transfer function for the low pass filter is 

selected to be: 
1

0

1)( jjH
   (11) 

where 0 is the corner frequency of the low pass filter.  Let  Xf(j ), 

X1(j ) be the Fourier transform of xf(t), x1(t) respectively.   From 

the above diagram, we have: 

)()()( 1 jXjHjX f
   {12) 

The coefficient of the fundamental component of xf(t) 
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Notice that here we are using a slight abuse of notation and are 

denoting both the independent variable frequency of the filter and 

the fundamental frequency of the first input signal by the same 

notation .  The coefficient of the i-th (for all i) harmonic of xf(t) 

H(s) SF
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will be given in Equation (14). 
1

0
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In order for x2(t)’s fundamental component to be sin t or the base 

harmonic spectral line to be j/2, the scaling factor SF should be 

j / 0 + 1.  Therefore the coefficient of the i-th harmonic of x2(t) is 

given as the following: 
1
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Since x2(t) is also periodic, using it as an input to the ADC, we can 

similarly get another periodic signal y2(t) as the steady state output 

response of the ADC.  In the time domain, y2(t) is given as: 
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If the Fourier transform of this output is taken and the spectral lines 

at various harmonic frequencies are denoted by  

harmonicthiiy fYh |)(22

we can get another set of harmonic balance equations for all i:
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After combining Equations (9) and (17), the following matrix 

equations can be obtained for each  i,
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From Equation (18), ai, bi can be calculated using the two sets 

of data records from y1(t) and y2(t). Once ai, bi are known, we can 

substitute ai, bi into Equation (2) to calculate SFDR or THD.  

3. Simulation  Results 
The SRE approach is applied to spectral performance testing 

of high-resolution flash ADCs.  A flash ADC is chosen because it 

has more independent error sources and is more challenging to 

fully characterize than most other structures. Specifically, an 

imperfect n-bit ADC is generated with random resistor mismatch in 

the R-string. Using an ideal sinusoid and FFT, the true spectral 

performance of the ADC is determined through simulation. 

In the SRE approach, simulated low-purity sine waves are 

used as the input signals to test the ADC’s spectral performance.  

To do this, harmonic distortions are randomly added to a pure sine 

wave to form the first input signal x1(t).  The spectrum of the first 

input signal x1(t) in one particular run is shown in Figure 2.  
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Figure 2. Spectrum of imprecise sinusoidal input signal 

As can be seen, x1(t) has many harmonic distortion 

components. The second harmonic has power at the –55.1 dB level 

relative to the full-scale signal power. Hence the purity of x1(t) is 

only 55.1dB, or about 9-bit.  The corresponding steady state ADC 

output signal y1(t)  is recorded and coherent samples are taken for 

use in FFT. The output spectrum of y1(t)  is displayed in Figure 3. 

If standard procedures for ADC spectral testing were to be 

followed with this data record, an incorrect conclusion would be 

drawn that the ADC had 55 dB SFDR, whereas the true SFDR of 

the ADC should be 104 dB as verified by ideal sinusoidal testing.  

The computed SFDR is basically the SFDR of the input signal 

itself. Hence we have verified that in the standard testing method, a 

low purity sine wave signal cannot be used as an excitation signal 

to test the spectral performance of the ADC, since the output 

spectrum will be corrupted by the input distortion.  

The SRE approach uses a second imprecise sine wave input. 

The second input is obtained by filtering the first imprecise sine 

wave through a simple low pass filter. By doing so, the spectra of 

the two imprecise sine waves are related to each other through the 

filter transfer function. This known relationship is used to correctly 

estimate the ADC’s true spectral performance.  
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Figure 3. ADC output spectrum with x1(t) as input 

After we obtained the spectra of both Y1(f) and Y2(f) we can 

calculate ai, bi, i, i according to Equation (18).  Then equation (2) 

can be used to calculate SFDR and THD.  Figure 4 plots both the 

true ADC spectrum and the estimated ADC spectrum as computed 

by the SRE method.  The true SFDR is 104.0 dB, measured with 

infinitely accurate sine input; the estimated SFDR calculated by the 

SRE method is 104.8 dB.  It must be emphasized that the accurate 

SFDR result from SRE was obtained with input signals with only 

55.1 dB purity.  This compares with the industry standard which 

will require an input signal whose purity is 124 dB or 21-bit pure. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-140

-120

-100

-80

-60

-40

-20

0

blue: actual ADC output spectrum with ideal sine input

red: estimated ADC output spectrum with imprecise sine inputs

Frequency relative to Nyquist frequency

P
o
w
e
r 
s
p
e
c
tr
a
l 
d
e
n
s
it
y
 (
d
B
)

Figure 4. True and SRE estimated ADC spectrum 

Robustness to filter bandwidth  

In the above simulations, we assume that the low pass filter’s 

corner frequency 0 can be adjusted by choosing appropriate R 

and/or C values so that 0 is equal to , the base harmonic 

frequency of the imprecise input sinusoidal signal.  However, due 

to finite tuning ability in R and C, there will be residual mismatches 

between 0 and .  In this case we can rewrite 0= (1+ ).

However, this knowledge of the filter mismatch was not known to 

the algorithms. Even though in real life ADC testing, it is very easy 

to tune the corner frequency of the filter to be as accurate as .1% 

mismatch of the frequency of the input signal, we performed 

extensive simulations for mismatches ranging from 0.1% to 10% in 

this paper.  The simulation results are summarized in table 1.  The 

SFDR and THD columns are testing results with infinite pure sine 

input and SFDR1 and THD1 are testing results from the SRE 
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approach using 9-10 bit pure sine wave inputs. Diff is the SFDR 

difference. 

Table 1. Testing results with various filter errors 

Nbit INL SFDR THD SFDR1 THD1 Diff 

0.1% 16 1.7 96.4 -91.6 96.7 -91.7 -0.3 

 16 1.4 100.2 -94.5 100.4 -94.6 -0.1 

0.3% 15 1.9 88.8 -86.4 88.8 -86.3 0 

 16 2.6 93.9 -91.4 94.6 -91.9 -0.7 

1% 16 1.2 101.7 -95.5 101 -95.1 0.8 

 15 1.3 90.9 -87.4 91 -87.5 -0.1 

3% 16 1.5 96.2 -92 96.6 -92 -0.3 

 15 1.6 91 -85.7 91.1 -85.9 -0.2 

10% 16 1.3 98.9 -94 99.1 -93.9 -0.2 

 16 1.6 92.1 -91.1 92.1 -91.1 0 

From table 1, it is clear that the accuracy of our algorithm does not 

deteriorate when the mismatch becomes bigger.  Our algorithm is 

very robust to filter corner frequency errors. 

Effects of test environment nonstationarity 

In real life testing, the testing environment will not be exactly the 

same during the time for measuring y1(t) and y2(t).  In this 

simulation, we investigate the robustness of the proposed 

algorithms with respect to the nonstationarity of the testing 

environment.  The most common nonstationarity could be the drifts 

of the Vref of the signal generator relative to the Vref of ADC under 

test.  In the following simulation results, we model this relative 

drift between the two reference voltages by a linear gradient error 

in Vref of the input signal with respect to time. Other types of 

gradient errors could be easily handled but were omitted here.  

Table 2 summarized the SFDRs for different ppm per minute linear 

gradients in Vref.  From table 2, we can see that the nonstationarity 

linear gradient does not affect the accuracy of our algorithm.   

Table 2. Testing results for various Vref gradients 

Grad Nbit INL SFDR THD SFDR1 THD1 Diff 

50ppm 16 2.3 91.9 -90.7 91.9 -90.6 0.1 

17 2.2 102.4 -96.6 102.5 -96.7 -0.1 

500 17 1.9 100.7 -97 100.6 -97.2 0 

15 0.9 95.2 -90.6 95.3 -90.4 -0.1 

5000 14 1.5 84.8 -81 85.2 -81.6 -0.4 

15 1.2 89.5 -88.3 89.8 -88.6 -0.3 

50000 15 1.2 96.3 -90.5 95.9 -90.8 0.4 

15 1.1 91.5 -89.4 91.2 -89.1 0.3 

Effects of measurement noise 

There will be some additive noise to the input signal in real life 

ADCs.  This noise would cause the ADC’s noise floor in the 

spectrum to be higher.  If the noise floor is as high as the largest 

harmonic distortion component, it will be very difficult to get the 

accurate SFDR for the ADC.  In this simulation, we investigate the 

performance of our new algorithm in the presence of additive noise 

at the ADC input node.  In the following simulations,  is the 

standard deviation of the random noise added to the imprecise input 

signal.  From table 3, we can see that our algorithm can give very 

accurate SFDR reading when  <= 1 LSB.  Notice that the SFDR 

and THD columns represent ideal sine wave testing without 

additive measurement noise. 

Table 3. Testing results with various levels of input additive noise 

Nbit INL SFDR THD SFDR1 THD1 Diff 

0.1 16 1.3 104.8 -98 106.1 -98.4 -1.2 

 16 2.3 92.1 -90.7 92.1 -90.6 -0.1 

0.3 16 2.6 94.5 -89.9 94.5 -90.2 0 

 15 1.6 94.9 -89.8 94.6 -89.6 0.3 

1 18 3.8 103.4 -98.4 103 -98.3 0.4 

 17 3.4 95.9 -91.9 95.6 -91.7 0.3 

3 14 0.5 92 -89.8 85.9 -78 6.1 

 16 1.2 100.3 -96.1 98.7 -90 1.6 

6 14 0.7 92.9 -88.9 80.6 -71.9 12.2 

 14 1.8 81.4 -79.8 75.0 -70.4 6.4 

4. Conclusion 
We have presented the SRE approach to accurate spectral 

performance testing for high resolution ADCs. Unlike standard 

approaches to ADC spectral testing which require excitation signals 

that are a decade or 3 bits better than the target performance of the 

ADC, the new approach uses two spectrally related, low-cost, easy-

to-generate, 9-10 bit pure sine wave signals to excite the ADC. The 

spectral relationship between the two excitations is used to separate 

the distortion inherent in the ADC from that in the input. DSP 

algorithms can then be used to compute the ADC spectral 

performance without being affected by the errors in the input 

signal. Simulation results show that 9-10 bit pure sine waves can be 

used to accurately test ADCs with over 100 dB SFDR performance. 

The approach is also shown to be robust to filter errors, to test 

environment nonstationarity, and to additive input noise. 

The SRE approach offers immediate significant cost saving in 

ADC testing that is currently done with very expensive testing 

equipment. It also offers a solution to certain high end parts for 

which there exist no viable spectral testing solutions currently. 

Since the proposed approach uses easy-to-generate signals that can 

be readily implemented on chip, it can be fully integrated to 

provide a low-cost BIST solution to ADC testing in SoC. 
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