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Abstract 

   The Fast Fourier Transform is the ubiquitous 
method of choice for spectral testing. However, its 
correct application to periodic signals requires either 
strict coherent sampling, or careful windowing, or 
other techniques that are computationally inefficient. 
This paper introduces a new method for achieving 
accurate spectral testing for periodic signals without 
the need for coherent sampling or windowing. 
Furthermore the method is computationally very 
efficient with only minimal addition to the 
computational complexity of FFT. The method is 
validated with both simulation data and experimental 
data. Extensive controlled simulation indicates that the 
method is very robust to errors in signal frequency, 
phase, amplitude, additive noise, and so on. Statistical 
analysis and comparative studies demonstrate that the 
proposed method achieves spectral testing accuracies 
similar to those obtained with perfect coherent 
sampling in an ideal noise-free environment. 
 

1. Introduction 
 In many important application areas such as signal 
processing and communications, spectral performance 
of an integrated circuit is of critical concern. The DFT 
(Discrete Fourier Transform) [1], or the fast 
implementation of it, FFT, is the most prevalent 
method for spectral performance testing. However, 
when using the FFT for spectral testing of periodic 
signals, one must be extremely careful not to allow the 
so-called frequency leakage problem to distort the 
actual spectrum of the signal. Specifically, one must 
make sure that the data record being used in the FFT 
algorithm represents exactly an integer number of 
periods of the signal. In other words, the signal 
frequency and the sampling clock frequency of the data 
acquisition system must be exactly coherent with each 
other. The FFT algorithm is notorious for being 
extremely intolerant to even the slightest mismatches 
between the two frequencies. It is shown that frequency 
errors at the levels of a small fractional ppm can cause 
disastrous measurement results. The resultant error 
manifests itself as the frequency leakage phenomenon 
in which energy from the fundamental spectral line is 
spread into neighboring frequencies causing the 
appearance of a “skirt”  around the spectral line.  
 Figure 1 shows the incorrect spectra of four pure 
sine wave signals. The details are irrelevant but notice 
that the spectra are qualitatively distorted due to 

straightforward application of FFT with non-coherently 
sampled data sets. A correct spectrum should consist of 
only two spectral lines at the input signal frequencies.  
 When a periodic signal is not a pure sine wave, its 
distortion components cause spectral lines to appear at 
integer multiples of the fundamental frequency. The 
heights of these harmonic spectral lines relative to the 
fundamental are key specifications in spectral testing of 
a signal.  However, when the skirt due to non-
coherency becomes higher than the harmonic distortion 
spectral l ines, the spectral testing results will be 
erroneous. To combat the leakage or skirting problem, 
the IEEE standard [2] as well as industry best practice 
is to require coherent sampling, meaning that the clock 
signal of the data acquisition system should be 
perfectly synchronized with the signal under test so 
that an integer multiple of signal periods are captured 
in a data record of length M. When this is guaranteed, 
direct use of FFT is permitted and the data analysis is 
computationally very efficient, requiring only 
O(MlogM) operations. 
 A second method is to use the windowing 
technique [3] while allowing non-coherent sampling. 
This technique does not remove the skirting due to 
non-coherency; rather it merely suppresses the skirting 
levels at frequencies far away from the base frequency. 
By doing so it alters the heights of the original spectral 
lines. Care must be taken in order to correctly recover 
the spectral lines. Another limitation is due to the fact 
that the amount of skirt suppression is limited and 
hence it is difficult to apply to relatively high purity 
signals. 
 Other methods for combating spectral leakage 
include singular value decomposition [4], in which the 
singular values of an M X M matrix formed from the 
data record are computed with time complexity O(M

3
), 

2-D FFT [5], which requires > O(M
2
log

2
M) operations, 

and filter banks [6]. These methods are accurate but 
they are computationally very inefficient. 
 In this paper, we introduce a new method for 
achieving very accurate spectral testing for periodic 
signals without the need for coherent sampling or 
windowing. The key idea can be called fundamental 
identification and replacement. The method is targeted 
for high precision spectral testing and is very efficient 
computationally with O(MlogM) operations. In its 
current form, it is limited to signals that are close to 
being sinusoidal. In the next section, we will 
reformulate the DFT problem for periodic signals and 
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point out the leakage mechanism. In section 3, we 
present the proposed method in detail. Sections 4 and 5 
contain simulation and experimental results validating 
the proposed method. It is shown that the method is 
very robust to errors in signal frequency, phase, 
amplitude, additive noise, and so on. Section 6 presents 
statistical analysis of extensive simulation results 
showing that the method achieves spectral testing 
accuracies comparable to those obtained with perfect 
coherent sampling in an ideal noise-free environment. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-80

-70

-60

-50

-40

-30

-20

-10

0

 

0 100 200 300 400 500 600 700
-80

-70

-60

-50

-40

-30

-20

-10

0

 

0 500 1000 1500 2000 2500 3000 3500
-140

-120

-100

-80

-60

-40

-20

0

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

 
Figure 1. Spectral leakage due to non-coherency 

 
2. DFT of Periodic Signals 

 Let sf  be the sampling frequency, ss fT /1=  the 

sampling interval, if  the unknown input signal 

frequency, and 0M  the nominal data record length. 

Then si ffMJ /0=  = ∆+0J  will be the number of 

periods of input signal in the data record, where 0J  is 

the integer part of J, ∆ is the fraction part of J. J0 and 
M0 are assumed to be co-prime. ∆ is unknown, so is J 
(J0 could be known). 
 Let the input signal be: 
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= ][][1 kxkx h+  

where ][1 kx  is the base harmonic component of ][kx , 

][kxh  is the sum of 2nd and higher harmonic 

components of ][kx .  Taking the Fourier transform 

leads to: 
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In the above equation, the term in the first line 
corresponds to the correct spectral line of the Fourier 
transform of the periodic signal x1(t), the terms in the 
second and third lines will be non-zero as long as ∆ is 
non-zero. These terms give rise to a skirt around the 
main spectral line. They are a linear combination of M0 
different frequency terms and therefore have M0 

independent basis functions. This is the reason that the 
skirt due to non-coherency can exhibit so many 
qualitatively different shapes. This very fact also 
dictates that any attempt trying to identify the skirt in 
the frequency domain with a reduced number of basis 
functions is going to be ineffectual.   
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 On the other hand, if one can somehow efficiently 
identify θ  and ∆ , then the skirt term can be 
calculated, and subtracted from ][xF  so that  

skirtxFxF −= ][][
^

 skirtxFxF h −+= ][[ 1
 

skirtxFskirtidealterm h −++= ][ ][ hxFidealterm +=  

Therefore, ][ hxF  is recovered, which is the harmonic 

distortion component in ][kx .  Even in such a case, the 
problem remains that there is no fast algorithm to 
compute the “skirt”  terms.  The computation of the 
skirt terms in ][1 nX  involves, for each n: 

 12 0 +M   exponential evaluations 

 morefewaM +03  multiplications 

 12 0 +M  additions 

Multiplying the above by 0M  for 1,2,1,0 0 −= Mn � ,  

leads to a total computation 000
2
0 log)( MMMMO >>>> . 

 In the next section we introduce a time domain 
identification and replacement method for removing 
the skirt but using only O(M0logM0) operations. 
 

3. The Proposed Method 
 From the discussion in the previous section, we 
know that as long as ∆ is non-zero, which means the 
data record length is not exactly an integer number of 
signal periods, the DFT algorithm introduces an error 
term in the Fourier transform of the fundamental 
component. This leakage term can be so large that it 
completely inundates the harmonic distortion 
components, making it impossible to correctly test the 
true spectrum of the signal. We also mentioned that if 
one can remove the skirt term, then the distortion terms 
can be revealed and correctly tested. Our goal is then to 
find a method for estimating and removing the skirt 
term from the DFT spectrum. If this can be done 
efficiently, the harmonic distortion components will 
show as spectral lines in the spectrum. Then the 
spectral heights at the harmonic frequencies can be 
correctly computed to determine the signal’s spectral 
performance.  
 Instead of identifying and removing the skirt in the 
frequency domain, the proposed approach works 
indirectly in the time domain. From the captured data 
(with distortion), we first estimate the amplitude, 
frequency and phase of the fundamental harmonic 
component. Once this is done, we replace the non-
coherent first harmonic component with a sine 
component that has the same amplitude and phase but a 
slightly modified frequency so that it becomes coherent 
with the sampling clock. This is all done in the time 
domain and it will be followed by standard FFT 
spectral analysis.  
 The enabling underline premise is that harmonic 
distortion components are all at frequencies that are 

multiples of the first harmonic. This means that they 
are all orthogonal to the component that we are trying 
to identify and hence we can ensure that with the right 
algorithm they will have minimal effects on the 
accuracy of the first harmonic identification. 
Furthermore, the harmonic distortion components are 
assumed to be much smaller than the base harmonic. 
 It is important to point out that in the process of 
first harmonic identification and replacement, the 
higher order harmonic distortion components are 
unchanged. On one hand this is good since distortion 
computation is not affected. On the other hand, this 
also means that any skirting effects in the harmonic 
distortion components are not corrected since these 
components are non-coherent with the sampling clock 
either. The result is that the measured heights of 
harmonic distortion components may be reduced by 
their own leakage effect. Fortunately, as is well known, 
the leakage only causes the spectral line to be lower by 
a small fraction of one dB. Therefore, its effect can be 
ignored. In the proposed method, we also select an 
appropriate data record length so that the data is close 
to being coherent to begin with. This further assures 
that the skirting effects on the distortion components 
can be comfortably neglected. 
 As denoted in the previous section, let the number 
of integer periods in the data record be 0J  and the total 

number of periods be JJ =∆+0 . Then the base 

harmonic in the signal can be represented by 
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There are three unknown parameters 0A , ∆ , and θ . 

Therefore a minimum of three known data points is 
needed to identify them. For example, 
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contain sufficient information to identify the three 
parameters. However, there are several difficulties. 
First, these equations are nonlinear and nontrivial to 
solve. Second, the values of the base harmonic 
component x1(t) are unknown. Only the distorted total 
signal x(t) is measured and known. Finally, 
measurement noise and quantization error in the 
measured data will affect the accuracy of the parameter 
identification.  
 We now introduce two different methods for 
dealing with these difficulties. In the first method we 
make use of two facts: 1) the signal purity is high with 
total distortion energy in the < −60 dB to −80 dB 
range, 2) the distortion components are going to be 
measured relative to the first harmonic component. 
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Fact 2 means we can scale the acquired data so that A0 
= 1 without affecting spectral testing. We can then use 
fact 1 to help achieve the correct scaling. Specifically, 
we scale the measured data record (with distortion) so 
that it has total signal power equal to 0.5. Since the 
total signal power is equal to the base harmonic power 
plus the total harmonic distortion power, we have 

TDPA += 2
05.05.0  

11)21( 5.0
0 ≈−≈−= TDPTDPA  

where TDP stands for the total distortion power which 
is assumed to be in the −60 dB to −80 dB range. Hence 
the error in taking A0=1 is in the 0.01 to 1 ppm range 
and negligible. Furthermore, the follow up computation 
of ∆ and θ is robust with respect to small errors in A0. 
All together, this can lead to a small error in the first 
harmonic replacement. If the error magnitude is at the 
−50 dB level or lower, its contribution to the spectrum 
will be at the −100 dB level or lower. Such error levels 
will likely not affect the spectral testing results.   
  By taking 10 =A , the above equation becomes 
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To further improve the robustness of the identification 
results, we will use more data points to obtain 
redundant solutions and use averaging to reduce the 
effects of noise and quantization. For example, we can 
use the following equations 
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to obtain another set of solutions for  ∆ and θ.  
 Once 0A , θ , ∆  are computed, we can generate a 

new data record by replacing the base harmonic from 
the original data (which is sampled non-coherently and 
causes possibly large skirts) with one that is coherent 
with the sampling clock. This is done by simply 
subtracting a sine component with the identified 
parameters and adding a sine component with the same 
A0 and θ but with ∆ being rounded to zero. 
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The first term on the right hand side is a coherent sine 
wave, its DFT will have spectral lines with magnitude 

0Â  at the thJ )1( 0+  and thJM )( 00 −  frequency bins.  

No skirts will come from the first term.  The second 
term represents the harmonic distortion components in 
the original data records. In order for the harmonic 
distortion components to correctly show up in the DFT 
of ][ˆ nx , the third term magnitude needs to be 

sufficiently below the expected harmonic distortion 
level. As we commented above, the power-based 
normalization can help us reduce the power level of the 
third term to the −100 dB or lower level, assuming the 
total harmonic distortion is at the −60 dB level.  
 Additional strategies for reducing the error: 
1. Use more equations than necessary to estimate 

0A , θ , ∆ , and use least square method in the 

estimation.  The error effects due to approximating 
][nx  by ][ˆ nx  are likely to be uncorrelated with each 

other.  The least square method has the capability of 
removing uncorrelated equation errors from the 
solutions.  Hence the estimation errors can be reduced 
to below the harmonic distortion level. 
2. In selecting the equation to use for solving 0A ,θ , 

∆ , care can be taken so that the harmonic distortion 
effects can be minimized.  For example, avoiding using 
data points that are at the same phase angle for the 
second harmonic frequency can reduce the effects of 
the 2nd harmonic distortion on 0A ,θ , ∆  estimation.  

Similarly, effects of other harmonic distortion terms 
can be reduced. 
3. Use zero-crossing up-edge trigger to start the data 
acquisition.  By doing so, θ  will be approximately 0 
and the errors in estimation θ  will have less effects. 
4. Choose a data record length to be possibly 
different from 0M  so as to minimize ∆ .  For example, 

take 02M  samples instead of 0M  samples.  Search 

through samples 0M  to 02M , to find the thM )1( 1+  

data point that most closely matches the 1st point in the 
data sequence.  That is, ]1[x  through ]1[ 1 +Mx  most 

closely match an integer number of signal periods.  
Then use ]1[x  to ][ 1Mx  for spectral analysis.  This 

method will lead to a small ∆ .  In most cases, the fact 
that ∆  is very small will be sufficient to reduce the 
skirt to a level that will allow the correct computation 
of harmonic distortion terms without the need of 
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replacing the non-coherent first harmonic component.  
This will be seen from the examples. 
 The first method can be summarized by the 
following steps: 
1. Synchronize the digitizer and input signal by using 

a positive zero-crossing edge to trigger sampling 
2. Take a sufficient number of samples (e.g. 2M0 

instead of the regular M0 samples) 
3. Find a data point between M0 and 2M0 that best 

matches the first data point and use all the points 
before this as the data record 

4. Identify base harmonic by first normalizing the 
data power to be 0.5 (and taking A0=1) and then 
using earlier equations to compute ∆ and θ 

5. Replace the non-coherent base harmonic by a 
coherent base harmonic as on last page 

6. Perform FFT analysis as usual 
 
 In the second method for identifying the three base 
harmonic parameters, the frequency or ∆ is identified 
first. Then it is used with a least square method to 
identify the Cartesian form of A0 and θ, that is, A0sin θ 
and A0cos θ. This method requires slightly more 
computation and is most suitable for situations where 
normalization is not appropriate. For the sake of space, 
we will simply describe the following step by step 
procedure for using the method.  
1. Take a sufficient number of samples (maybe a few 

times the intended FFT length, no need for 
synchronization or edge triggering) 

2. Search among a subset of the data points (eg the 
10% points that are closest to zero-crossing) for a 
few best-matched pairs 

3. Select the pair (call them x[k1] and x[k2]) whose 
index difference (k2− k1) has the most number of 
factors and use all the data point between this pair 
together with one of the end points (eg x[k1] to 
x[k2-1]) as the data record 

4. Count the integer number of cycles J0 in the data 
record and computer the fractional cycle 
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magnitude. Then the input signal frequency is  
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and use least square method to identify 
)cos(0 θA and )sin(0 θA  

6. Perform the first harmonic replacement 
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7. Perform FFT analysis as usual 
 
 Both of the two methods presented above are 
computationally very efficient. In both cases, data 
acquisition time will be longer than if perfect coherent 
sampling is available. The time can be up to a factor of 
5 depending on how many extra data points are to be 
collected. In any case, the data acquisition time should 
be small for no more than 10K points with today’s 
ADCs. In the first algorithm, the search for the best 
match and the normalization both require 
computational time that is proportional to the data 
record length. Computation required for ∆ and θ is very 
small. In the second method, steps 2, 4 and 6 each 
require a time proportional to the data record length. 
Step 5 is more flexible but it can also require a time 
proportional to the data length if we want to take the 
most advantage of the noise reduction power of least 
squares. The computation in step 3 is trivial but the 
results of step 3 can affect the time requirement of step 
7, the standard FFT. If the data record length has small 
factors, then the FFT is very efficient and requires 
O(MlogM) operations where M is the length. In the 
unlikely event when M is a prime number, the FFT 
would require O(M2) operations. Because of this, the 
first method could be slower if it ends up using a prime 
number FFT length. Nevertheless, in both method 1 
and method 2, the most dominant part of the 
computation is for performing the standard FFT. 
Therefore both methods are extremely efficient. 
 

4. Simulation results 
To verify the performance of the proposed 

algorithms, we have conducted extensive simulation 
study as well as experimental study. In this section we 
will present two spectral testing examples, one 
represents a typical case and the other a less-likely 
case. The simulation environment is set up so that 
many parameters are randomly generated. The intended 
data record length is randomly chosen among 210 ~ 13. 
The quantization resolution of the digitizer is randomly 
selected among 12 ~ 17 bits. The input signal 
frequency is generated by selecting a random ratio of 
fsig to fsamp. The signal magnitude has random error, but 
guaranteed to be within a range. A random DC off set 
error is introduced to the signal. A random phase 
synchronization error is also included. Additive 
measurement noise is introduced at the input node of 
the digitizer with a standard deviation of around 1 
LSB. The distorted sine wave signal is generated by 
adding random amount of harmonic distortion 
components to a pure sine wave. For comparison, four 
different spectral testing methods are simulated. These 
are: 1) perfect coherent sampling with ideal noise-free 
environment, 2) straightforward application of DFT 
assuming periodic sampled sequence, 3) simply 
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selecting a best data record length as discussed in the 
proposed method, and 4) the proposed method which 
includes 3) followed by first harmonic identification 
and replacement.  
First example 

This is a representative example in that 1) the ideal 
case and proposed method generated a spectrum 
showing zero or minimal skirts as can be seen from 
Figure 3 and Figure 6, 2) these two methods and the 
3rd method all produced accurate measurements of the 
signal SFDR, as can be seen from Figures 3, 5, and 6, 
3) straightforward application of DFT suffered from 
large errors due to non-coherency, as is easily seen 
from Figure 4. The true SFDR of the signal is 
computed analytically in continuous time domain. A 
time domain illustration of the coherent and non-
coherent data samples is shown in Figure 2. It is 
particularly worth pointing out that the proposed 
method (Figure 6) is subject to all sorts of non-
idealities whereas in Figure 3 everything is ideal. 
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Figure2. Time domain data samples from coherent and 

non-coherent sampling 
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Figure 3. Spectrum from ideal coherent sampling 
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Figure 4 Straightforward application of DFT to non-

coherent data samples 
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Figure 5. DFT with non-coherent samples with best 

data record length 
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Figure 6. The proposed method: non-coherent samples, 

best data length, and 1st harmonic replacement 
 

Second example 
From our experience of large numbers of 

simulations, the situation il lustrated in the first example 
is the most commonly seen. This means in many 
situations the signal spectral distortion can be 
computed to a sufficient accuracy by following part of 
the procedures described in the proposed method so 
that an appropriate data record length is selected to 
approximately match the coherent sampling condition. 
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In such cases, the skirting is not removed from the 
spectrum and therefore the signal spectrum is not 
correctly computed, but the error due to skirting is not 
large enough to dominate the harmonic distortion 
components. However, with a relatively small but 
certainly not small enough to be negligible probability, 
a situation can happen that the un-corrected skirting is 
still too large for the correct testing of harmonic 
distortion in the signal. The second example illustrates 
this situation. In this example the signal frequency is 
relatively high as compared to the Nyquist frequency. 
Hence the signal phase changes very quickly with the 
index. This makes it more difficult to find a data record 
length that is very close to being coherent.  Figure 7 
illustrate the time domain data samples from coherent 
and non-coherent sampling. As is from the previous 
example, the straight forward application of FFT to the 
non-coherent samples produced a spectrum that is 
totally dominated by the spectral leakage effect and the 
signal distortion cannot be correctly measured, see 
Figure 8.  By following partially the procedures of the 
proposed method to select an approximately coherent 
data record length, the skirting effect due to non-
coherency is greatly reduced as can be seen from 
Figure 9. However, the skirt is still above the harmonic 
distortion component level and also significantly above 
the noise floor of the 15-bit ADC. The spectrum in 
deed looks quite different from the correct spectrum in 
Figure 10 which is obtained using perfect coherent 
sampling in an ideal testing environment. Fortunately, 
the proposed method with base harmonic identification 
and replacement is still capable of removing the 
skirting effect and producing a spectrum (see Figure 
11) that is essentially the same as that in Figure 10. 
Again, the proposed method worked with non-coherent 
data samples and the testing environment is subject to 
various non-idealities. The computation requirement is 
only slightly larger. This clearly demonstrates both the 
efficacy and the robustness of the proposed method.  
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Figure 7. Data samples from coherent and non-

coherent sampling 
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Figure 8 Straightforward application of DFT to the 

non-coherent data samples 
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Figure 9. DFT with non-coherent samples and best data 

record length without first harmonic replacement 
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Figure 10. Signal spectrum from perfect coherent 

sampling and ideal test environment 
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Figure 11. The proposed method: non-coherent 
samples, best data length, and 1st harmonic 

replacement 
 

5. Experimental Results 
Since the proposed method exhibited excellent 

spectral performance with sufficient robustness to 
various error sources, we wanted to validate the 
algorithms with experimental data. Figure 12 is the 
time domain representation of the captured data. The 
data is collected in an industry setting. Although we are 
not in a position to talk about details of how the data is 
collected but it suffices to say that it is supposed to be 
discarded. The data was sampled non-coherently and 
the signal was slightly clipped at both the top and the 
bottom. A small zoomed-in piece is show in Figure 13 
in which one can see the clipping at the top. 

2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Sampling instant index

A
D
C
 o

ut
pu

t 
co

de

Segment of raw data used in linearity estimation

 
Figure 12 Raw data of non-coherent samples of sine 

wave slightly clipped at the top and bottom 
 

To analyze the spectral contents of the signal, one 
can straight forwardly apply DFT to the raw data. The 
resultant spectrum is shown in Figure 14. The clearly 
visible skirting completely dominates any harmonic 
distortion components that may be present. Hence no 
testing information is obtained.  

Next the proposed method was applied to analyze 
the spectral contents of the captured signal. The 
resultant spectrum is shown in Figure 15. Notice that 
all skirting effects have been removed and the noise 
floor has been pushed down to the −100dB level. Rich 
spectral contents are clearly shown. 

Since the signal has not been coherently sampled, 
we do not know what the true spectrum of the signal is. 
However we do know that the signal is a nice clean 
sine wave clipped at the top and bottom. By adjusting 
the amount of clipping, we can create a clipped sine 
wave whose true spectrum is shown in Figure 16. It 
exhibits very similar spectral characteristics to those in 
Figure 15. Therefore we believe that the spectrum 
shown in Figure 15 is indeed the true spectrum of the 
signal being captured.  
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Figure 13. A zoomed in piece showing clipping at the 

extremes. 
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Figure 14. Spectrum by standard application of DFT 
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Figure 15. Spectrum of the captured signal using the 

proposed method 
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Figure 16. True spectrum of a sine wave with clipping 

at the top and bottom 
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In addition to the spectral information about the 
signal, Figure 15 also reveals some information about 
the linearity of the underlining digitizer. Notice that the 
harmonic distortion spectral lines due to clipping have 
a nice smooth envelope resembling a sinc function. The 
highest harmonics spectral line that deviates from this 
nice envelope is around the −85dB level. This 
deviation is due to the addition of distortion from the 
digitizer and it means that the digitizer is likely to have 
a SFDR near the 85dB level. In deed the digitizer used 
to capture the data is a 14 bit ADC. The use of the 
proposed method in testing ADC spectral performance 
is currently under study. 

 
6. Statistical Performance Study 

In the simulation results section, we have 
mentioned that the simulation program is set up so that 
many non-ideal factors are randomly generated and 
many runs with different randomly generated 
parameters have been tested. There is one 
phenomenon, though not frequent, that caught our 
attention. That is, once in a great while very large 
SFDR testing error is produced with the proposed 
method. We decided to perform some extensive 
statistical analysis to figure out what the cause is. Well 
over 10000 runs were conducted with various 
randomly generated parameters such as input signal 
frequency, digitizer resolution, the size of the fractional 
period in the data record, total data record length, the 
amount of signal magnitude errors, initial 
synchronization errors, additive measurement noise, 
and so on. Correlation between the signal SFDR testing 
errors and various controlled parameters was studied. 
We also studied the correlation to the accuracy in A0, ∆, 
and θ estimation. Because of page limitation, we 
cannot discuss all of our findings here. But it is 
sufficient to point out that the proposed method is very 
insensitive to all the parameters that we studied except 
for one: the ratio of the input signal frequency to the 
sampling clock frequency. Figure 17 contains data 
from over 10000 runs. The horizontal axis is the ratio 
of input signal frequency to clock frequency as a 
percentage. The vertical axis is the signal SFDR testing 
error from each run. Clearly, when the signal frequency 
is very close or above the digitizer’s Nyquist 
frequency, the SFDR measurement errors are usually 
large. There are also certain signal frequencies, for 
example exactly 1/3 or ¼ of the clock frequency, for 
which the proposed method does not work. In 
hindsight, the reason is simple. In such cases, one or 
more of the harmonic frequencies or their aliased 
versions become exactly equal to some other harmonic 
frequencies. When this happens, correct measurements 
cannot be obtained. We also want to point out that at 
these frequencies, the perfect coherent sampling with 

ideal environment cannot guarantee correct 
measurement of the signal spectral performance either. 
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Figure 17 Correlation of SFDR estimation error to 

signal frequency from over 10K random runs 
 

Based on the findings from the statistical study, we 
recommend that certain signal and clock frequency 
combinations should be avoided if the ratio fin/fs can be 
reduced to a rational number with small integers. Next, 
we coded this requirement into the code where random 
input frequencies are generated so that no such 
frequencies are generated.  The generated frequency is 
rounded to a nearest coherent frequency for use in the 
benchmark ideal case for comparison. We also avoided 
using extremely low frequencies, since it is known that 
at very low frequencies parameter identification 
accuracy is difficult to maintain. [7] 

Simulation of 1000 cases that avoid inappropriate 
frequencies was conducted. Figure 18 illustrates the 
signal SFDR testing errors when the proposed method 
is used. Again the horizontal axis is the input signal 
frequency to clock frequency ratio. Notice that in all 
1000 runs, the SFDR errors are within ±4dB. For 
comparison, Figure 19 il lustrates the SFDR testing 
errors for the same 1000 cases when the ideal perfect 
coherent sampling is used. For this method, there is one 
case when the frequency was rounded, it became a 
degenerate frequency of exactly ¼ of clock frequency. 
The testing result for this case was totally off. There 
are two other cases when the frequencies were 
rounded, they became those frequencies that should 
have been avoided. Other than these three cases, the 
ideal perfect coherent sampling method performed just 
as well as or slightly better than the proposed method.  
Figure 20 illustrates the results when DFT is straight 
forwardly applied. It can be clearly concluded that such 
a method cannot be used for non-coherently sampled 
data. Figure 21 illustrates the results by partially 
following the procedures described in this paper to 
select the most suitable data record length but without 
first harmonic replacement. It can be seen that for a 
large percentage of the cases, this method produced 
sufficiently small testing errors.  
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Table 1 summarizes the statistics of these 
comparative study results.  

 
Figure 18. SFDR testing errors in 1000 runs using the 

proposed method, vs fin /fs*100 
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Figure 19. SFDR testing errors in 1000 runs using the 

perfect coherent sampling in the ideal case 
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Figure 20. SFDR testing errors in 1000 runs non-

coherent sampling in the standard approach 
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Figure 21. SFDR testing errors in 1000 runs using non-
coherent samples with best data length 

 
Table 1 Summary of SFDR test errors in 1000 runs  

          Ideal    Standard Best length  Proposed 
   min -8.33  -5.26 -16.35  -4.01 
   max  91.1  103.2   32.19   3.52     
   mean 0.01 34.75    0.61  0.17 
    std  3.08  15.80  2.63   0.91 

* Ideal case was skewed by three bad data points, 
would have been comparable to proposed case if those 
bad points were excluded 
 

Conclusion 
A new method for accurate spectral performance 

testing is presented that does not require coherent 
sampling or the use of windowing. The proposed 
method achieves SFDR testing performance 
comparable to ideal perfect coherent sampling. 
Extensive simulation study and statistical performance 
analysis have been conducted. The method is 
demonstrated to be very robust to various sources of 
errors. The computational efficiency of the algorithm is 
excellent with only slightly more computations than 
FFT. However, the method is vulnerable when the 
signal frequency is near the Nyquist frequency or at 
certain degenerate frequencies for which even DFT 
with ideal perfect coherent sampling cannot work well. 
Therefore, the proposed method offers comparable 
performance to FFT with perfect coherent sampling but 
without requiring coherent sampling. 
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