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Abstract

The Fast Fourier Transform is the ubiquitous
method of choice for spectra testing. However, its
correct application to periodic signals requires either
strict coherent sampling, or careful windowing, or
other techniques that are computationaly inefficient.
This paper introduces a new method for achieving
accurate spectral testing for periodic signals without
the need for coherent sampling or windowing.
Furthermore the method is computationdly very
efficient with only minima addition to the
computational complexity of FFT. The method is
validated with both simulation data and experimental
data. Extensive controlled simulation indicates that the
method is very robust to errors in signa frequency,
phase, amplitude, additive noise, and so on. Statistica
analysis and comparative studies demonstrate that the
proposed method achieves spectra testing accuracies
similar to those obtained with perfect coherent
sampling in an ideal noise-free environment.

1. Introduction

In many important application areas such as signal
processing and communications, spectral performance
of an integrated circuit is of critica concern. The DFT
(Discrete Fourier Transform) [1], or the fast
implementation of it, FFT, is the most prevalent
method for spectra performance testing. However,
when using the FFT for spectral testing of periodic
signas, one must be extremely careful not to alow the
so-called frequency leakage problem to distort the
actual spectrum of the signal. Specificaly, one must
make sure that the data record being used in the FFT
algorithm represents exactly an integer number of
periods of the signd. In other words, the signa
frequency and the sampling clock frequency of the data
acquisition system must be exactly coherent with each
other. The FFT algorithm is notorious for being
extremely intolerant to even the slightest mismatches
between the two frequencies. It is shown that frequency
errors at the levels of a small fractional ppm can cause
disastrous measurement results. The resultant error
manifests itself as the frequency leakage phenomenon
in which energy from the fundamental spectrd line is
spread into neighboring frequencies causing the
appearance of a*“skirt” around the spectral line.

Figure 1 shows the incorrect spectra of four pure
sine wave signals. The details are irrelevant but notice
that the spectra are qualitatively distorted due to

straightforward application of FFT with non-coherently
sampled data sets. A correct spectrum should consist of
only two spectral lines at the input signal frequencies.

When a periodic signal is not a pure sine wave, its
distortion components cause spectral lines to appear at
integer multiples of the fundamenta frequency. The
heights of these harmonic spectra lines relative to the
fundamental are key specificationsin spectra testing of
a signa. However, when the skirt due to non-
coherency becomes higher than the harmonic distortion
spectra lines, the spectra testing results will be
erroneous. To combat the leakage or skirting problem,
the |EEE standard [2] as well as industry best practice
is to require coherent sampling, meaning that the clock
signa of the data acquisition system should be
perfectly synchronized with the signa under test so
that an integer multiple of signal periods are captured
in a data record of length M. When this is guaranteed,
direct use of FFT is permitted and the data analysis is
computationally very efficient, requiring only
O(MlogM) operations.

A second method is to use the windowing
technique [3] while alowing non-coherent sampling.
This technique does not remove the skirting due to
non-coherency; rather it merely suppresses the skirting
levels at frequencies far away from the base frequency.
By doing so it alters the heights of the original spectral
lines. Care must be taken in order to correctly recover
the spectra lines. Another limitation is due to the fact
that the amount of skirt suppression is limited and
hence it is difficult to apply to relaively high purity
signals.

Other methods for combating spectral leakage
include singular value decomposition [4], in which the
singular values of an M X M matrix formed from the
data record are computed with time complexity O(MS),
2-D FFT [5], which requires > O(leogzM) operations,
and filter banks [6]. These methods are accurate but
they are computationally very inefficient.

In this paper, we introduce a new method for
achieving very accurate spectral testing for periodic
signals without the need for coherent sampling or
windowing. The key idea can be called fundamental
identification and replacement. The method is targeted
for high precision spectral testing and is very efficient
computationally with O(MlogM) operations. In its
current form, it is limited to signals that are close to
being sinusoida. In the next section, we will
reformulate the DFT problem for periodic signals and
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point out the leakage mechanism. In section 3, we
present the proposed method in detail. Sections 4 and 5
contain simulation and experimental results validating
the proposed method. It is shown that the method is
very robust to errors in signal frequency, phase,
amplitude, additive noise, and so on. Section 6 presents
stetistical andlysis of extensive simulation results
showing that the method achieves spectra testing
accuracies comparable to those obtained with perfect
coherent sampling in an idea noise-free environment.

Figure 1. Spectra |eakage due to non-coherency

2. DFT of Periodic Signals
Let fg be the sampling frequency, T, =1/f, the
sampling interval, f, the unknown input signal
frequency, and M, the nominal data record length.
Then J=Myf/f, =J,+A will be the number of
periods of input signal in the data record, where J, is

the integer part of J, A is the fraction part of J. J, and
My are assumed to be co-prime. A is unknown, so is J
(Jo could be known).
Let theinput signal be:
X(t) = Asin(2r fit + 8) + > (b, sin277nfit + a, cos27nft)

n=2

where A=1, #0[0,27n), a,, b, for n>2 areall
unknown, but together they satisfy 3 (b2 + a2) << 1,
n=2
> (b, sin2mf;t +a, cos2mf;t)| <<1.
n=2
The samplesof x(t) at sampling rate f  are given by:

K] = Asin(27f; L+6?)+ > (b, sin2mf; — K +a, cos2mf; L)
f n=2 fs fs
fi_J_J0+A_JO+A

Since ——_,wealso have
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K] = Asin2mr—>k + 27—k +6
x[K] ( v v )

0 0
. k k
+ Y (b, sin2mf; — +a, cos2mf; —)
n=2 fs fs
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2j

+>" (b, sin2mf, —+anc032mf —)

nx2 5 s
= Xy[K] + xq[K]
where x;[K] is the base harmonic component of XKk],
Xy[K] is the sum of 2™ and higher harmonic
components of Xk]. Taking the Fourier transform
leadsto:

X(f)=FIX(f) = F[x](f) + F[x,](f)
=X, () + X, (f)
Mo-1 2’7

nk
Using the DFT formula X[n] = Mi > x[k] ,

0 k=0

Xq[n] can be derived to be:
Xy[n] = [9“"5(n Jo) —€"%a(n+Jy)]

P27 (3ok=nk)
0

Mol jﬁAk
+—e‘9 Z e™ -Dpe"
O

Mo-1 _j=f —1 27 (nk+ 3ok)

— gl e M° —1e Mo
ZJM Z(

k=0

In the above equation, the term in the first line
corresponds to the correct spectral line of the Fourier
transform of the periodic signal x,(t), the terms in the
second and third lines will be non-zero aslong as A is
non-zero. These terms give rise to a skirt around the
main spectra line. They are a linear combination of Mg
different frequency terms and therefore have Mg
independent basis functions. This is the reason that the
skirt due to non-coherency can exhibit so many
qualitatively different shapes. This very fact aso
dictates that any attempt trying to identify the skirt in
the frequency domain with a reduced number of basis
functionsis going to be ineffectual .
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On the other hand, if one can somehow efficiently
identify 6 and A, then the skirt term can be
calculated, and subtracted from F[x] so that

FIX] = F[X] - skirt = F[x + F[x,] - skirt
=idealterm+skirt + F[x,] — skirt =idealterm+ F[x,]
Therefore, F[x,] is recovered, which is the harmonic

distortion component in x[K]. Even in such acase, the

problem remains that there is no fast algorithm to
compute the “skirt” terms. The computation of the
skirt termsin X,[n] involves, for each n:

2M, +1 exponential evaluations
3M, + a fewmore multiplications
2M, +1 additions
Multiplying the above by M, for n=0,12,---M, -1,
leads to atotal computation o(M2) >> M, logM, >> M, -
In the next section we introduce a time domain

identification and replacement method for removing
the skirt but using only O(MglogMy) operations.

3. The Proposed M ethod

From the discussion in the previous section, we
know that as long as A is non-zero, which means the
data record length is not exactly an integer number of
signa periods, the DFT agorithm introduces an error
term in the Fourier transform of the fundamental
component. This leakage term can be so large that it
completely inundates the harmonic distortion
components, making it impossible to correctly test the
true spectrum of the signal. We also mentioned that if
one can remove the skirt term, then the distortion terms
can be revealed and correctly tested. Our goal is then to
find a method for estimating and removing the skirt
term from the DFT spectrum. If this can be done
efficiently, the harmonic distortion components will
show as spectra lines in the spectrum. Then the
spectral heights at the harmonic frequencies can be
correctly computed to determine the signal’s spectral
performance.

Instead of identifying and removing the skirt in the
frequency domain, the proposed approach works
indirectly in the time domain. From the captured data
(with distortion), we first estimate the amplitude,
frequency and phase of the fundamental harmonic
component. Once this is done, we replace the non-
coherent first harmonic component with a sine
component that has the same amplitude and phase but a
slightly modified frequency so that it becomes coherent
with the sampling clock. This is all done in the time
domain and it will be followed by standard FFT
spectral analysis.

The enabling underline premise is that harmonic
distortion components are al at frequencies that are
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multiples of the first harmonic. This means that they
are all orthogonal to the component that we are trying
to identify and hence we can ensure that with the right
agorithm they will have minima effects on the
accuracy of the first harmonic identification.
Furthermore, the harmonic distortion components are
assumed to be much smaller than the base harmonic.

It is important to point out that in the process of
first harmonic identification and replacement, the
higher order harmonic distortion components are
unchanged. On one hand this is good since distortion
computation is not affected. On the other hand, this
also means that any skirting effects in the harmonic
distortion components are not corrected since these
components are non-coherent with the sampling clock
either. The result is that the measured heights of
harmonic distortion components may be reduced by
their own leakage effect. Fortunately, asis well known,
the leakage only causes the spectra lineto be lower by
asmall fraction of one dB. Therefore, its effect can be
ignored. In the proposed method, we also select an
appropriate data record length so that the data is close
to being coherent to begin with. This further assures
that the skirting effects on the distortion components
can be comfortably neglected.

As denoted in the previous section, let the number
of integer periodsin the data record be J, and the total
number of periods beJ,+A=J. Then the base
harmonic in the signal can be represented by

X[kl = A sinz22 2k +6)
MO
There are three unknown parameters A,, A, and 6.

Therefore a minimum of three known data points is
needed to identify them. For example,

k=0: x[0] = Asin(6)
K=Mg:  x[M,]=Asn2m +8)
M
k=0 xi=Asnle+m+6)

contain sufficient information to identify the three
parameters. However, there are severa difficulties.
First, these equations are nonlinear and nontrivial to
solve. Second, the values of the base harmonic
component X;(t) are unknown. Only the distorted total
signd x(t) is measured and known. Findly,
measurement noise and quantization error in the
measured data will affect the accuracy of the parameter
identification.

We now introduce two different methods for
dealing with these difficulties. In the first method we
make use of two facts: 1) the signa purity is high with
total distortion energy in the < -60 dB to —-80 dB
range, 2) the distortion components are going to be
measured relative to the first harmonic component.



Fact 2 means we can scale the acquired data so that A,
= 1 without affecting spectral testing. We can then use
fact 1 to help achieve the correct scaling. Specificaly,
we scale the measured data record (with distortion) so
that it has total signal power equal to 0.5. Since the
total signal power is equal to the base harmonic power
plus the total harmonic distortion power, we have

0.5=0.5A2 +TDP
A, =(1-2TDP)*® =1-TDP =1
where TDP stands for the total distortion power which
is assumed to be in the —60 dB to —80 dB range. Hence
the error in taking Ag=1 is in the 0.01 to 1 ppm range
and negligible. Furthermore, the follow up computation
of A and 6 is robust with respect to small errorsin A,.
All together, this can lead to a small error in the first
harmonic replacement. If the error magnitude is at the
—50 dB level or lower, its contribution to the spectrum
will be at the =100 dB level or lower. Such error levels
will likely not affect the spectral testing results.
By taking A, =1, the above equation becomes

0X0] = x[0] = sin(6)
Y M,] = x[M,] =sin(27A +6)
O2m+8=sin""({M,])
or:
6=sn"(x0])

27 =sin™H(qM,]) -sin™(0])
To further improve the robustness of the identification
results, we will use more data points to obtain
redundant solutions and use averaging to reduce the

effects of noise and quantization. For example, we can
use the following equations

1] = x,[1] = sin(&—”(ao +0)+6)

2n 2n _
O0—=J,+—A+8=sin™ (]
M M (1)

0 0

(M, ~1] -~sm(f/|—”(ao +D)(M, -1)+6)

0

023, + B)(M, =1 + 0 =sin*({M, ~1)
0
to obtain another set of solutionsfor A and 6.
Once A,, 8, A are computed, we can generate a

new data record by replacing the base harmonic from
the original data (which is sampled non-coherently and
causes possibly large skirts) with one that is coherent
with the sampling clock. This is done by simply
subtracting a sine component with the identified
parameters and adding a sine component with the same
Agand 6 but with A being rounded to zero.

A)n+6’)+ADsm( 2700 14 6)

0 0

300] = i - A, sin 212 2)

= ﬁbsin(zm0 n+6) + originalharmonics

HasnZ ot g A snZe ), gy
MO MO
The first term on the right hand side is a coherent sine
wave, its DFT will have spectral lines with magnitude
A, at the (1+Jg)th and (M, — J,)th frequency bins.
No skirts will come from the first term. The second
term represents the harmonic distortion components in
the original data records. In order for the harmonic
distortion components to correctly show up in the DFT
of Xn], the third term magnitude needs to be
sufficiently below the expected harmonic distortion
level. As we commented above, the power-based
normalization can help us reduce the power level of the
third term to the —100 dB or lower level, assuming the
total harmonic distortion is a the —60 dB level.
Additional strategies for reducing the error:
1. Use more equations than necessary to estimate
Ay, 8, A, and use least square method in the

estimation. The error effects due to approximating
Xn] by Xn] are likely to be uncorrelated with each
other. The least square method has the capability of
removing uncorrelated equation errors from the
solutions. Hence the estimation errors can be reduced
to below the harmonic distortion level.

2. In selecting the equation to use for solving A, 8,
A, care can be taken so that the harmonic distortion
effects can be minimized. For example, avoiding using
data points that are a the same phase angle for the
second harmonic frequency can reduce the effects of
the 2™ harmonic distortion onA,,8, A estimation.
Similarly, effects of other harmonic distortion terms
can be reduced.

3. Use zero-crossing up-edge trigger to start the data
acquisition. By doing so, 8 will be approximately 0
and the errorsin estimation 6 will have |ess effects.

4. Choose a data record length to be possibly
different from M, so asto minimize A. For example,
take 2M, samples instead of M, samples. Search
through samples M, t02M,, to find the (1+M,)th
data point that most closely matches the 1% point in the
data sequence. That is, X[1] through XM, +1] most
closdly match an integer number of signal periods.
Then use X[1] to X{M;] for spectral analysis. This
method will lead to asmall A. In most cases, the fact
that A is very small will be sufficient to reduce the
skirt to a level that will allow the correct computation
of harmonic distortion terms without the need of
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replacing the non-coherent first harmonic component.

This will be seen from the examples.

The first method can be summarized by the
following steps:

1. Synchronizethe digitizer and input signal by using
a positive zero-crossing edge to trigger sampling

2. Takeasufficient number of samples (e.g. 2Mq
instead of the regular M, samples)

3. Find adata point between Mg and 2M,, that best
matches the first data point and use all the points
before this as the data record

4. ldentify base harmonic by first normalizing the
data power to be 0.5 (and taking Ap=1) and then
using earlier equations to compute A and 6

5. Replace the non-coherent base harmonic by a
coherent base harmonic as on last page

6. Perform FFT anaysis as usua

In the second method for identifying the three base
harmonic parameters, the frequency or A is identified
first. Then it is used with a least square method to
identify the Cartesian form of Aq and 6, that is, A;sin 6
and Ao,cos6. This method requires slightly more
computation and is most suitable for situations where
normaization is not appropriate. For the sake of space,
we will simply describe the following step by step
procedure for using the method.

1. Takeasufficient number of samples (maybe afew
times the intended FFT length, no need for
synchronization or edge triggering)

2. Search among a subset of the data points (eg the
10% points that are closest to zero-crossing) for a
few best-matched pairs

3. Select the pair (cal them x[k,] and x[k,]) whose
index difference (ko— ki) has the most number of
factors and use al the data point between this pair
together with one of the end points (eg x[ki] to
X[Ko-1]) as the data record

4. Count the integer number of cycles Jy in the data
record and computer the fractiona cycle

PR S (A LA
2 (\/Ai —xz[kll)
where ,&D isafirst estimate of the base harmonic
magnitude. Then the input signal frequency is
fin = fs I\(JojkA
2 1
5. At asubset of data points write
X[Kk] = Ay cos(6) sin(27 f;,t, ) + Ay sin(8) cos(27T ity )
and use least square method to identify
Ay cos(d) and A,sin(6)
6. Perform thefirst harmonic replacement
XKl = X[K] = Ag sin(27 finty +6)
+Aysin2m f t, Jg I(ky — k) +6)
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7. Peform FFT andysis as usual

Both of the two methods presented above are
computationally very efficient. In both cases, data
acquisition time will be longer than if perfect coherent
sampling is available. The time can be up to a factor of
5 depending on how many extra data points are to be
collected. In any case, the data acquisition time should
be small for no more than 10K points with today’s
ADCs. In the first dgorithm, the search for the best
match and the normaization both require
computational time that is proportiona to the data
record length. Computation required for A and 8 isvery
small. In the second method, steps 2, 4 and 6 each
require a time proportiona to the data record length.
Step 5 is more flexible but it can aso require a time
proportiona to the data length if we want to take the
most advantage of the noise reduction power of least
squares. The computation in step 3 is trivia but the
results of step 3 can affect the time requirement of step
7, the standard FFT. If the data record length has small
factors, then the FFT is very efficient and requires
O(MlogM) operations where M is the length. In the
unlikely event when M is a prime number, the FFT
would require O(M?) operations. Because of this, the
first method could be slower if it ends up using a prime
number FFT length. Nevertheless, in both method 1
and method 2, the most dominant part of the
computation is for performing the standard FFT.
Therefore both methods are extremely efficient.

4. Smulation results

To verify the performance of the proposed
algorithms, we have conducted extensive simulation
study as well as experimental study. In this section we
will present two spectral testing examples, one
represents a typical case and the other a lesslikely
case. The simulation environment is set up so that
many parameters are randomly generated. The intended
data record length is randomly chosen among 2%° ~ %2,
The quantization resolution of the digitizer is randomly
selected among 12 ~ 17 bits. The input signd
frequency is generated by selecting a random ratio of
fsig t0 feamp. The signal magnitude has random error, but
guaranteed to be within a range. A random DC off set
error is introduced to the signal. A random phase
synchronization error is aso included. Additive
measurement noise is introduced at the input node of
the digitizer with a standard deviation of around 1
LSB. The distorted sine wave signal is generated by
adding random amount of harmonic distortion
components to a pure sine wave. For comparison, four
different spectra testing methods are simulated. These
are: 1) perfect coherent sampling with ideal noise-free
environment, 2) straightforward application of DFT
assuming periodic sampled sequence, 3) simply



selecting a best data record length as discussed in the
proposed method, and 4) the proposed method which
includes 3) followed by first harmonic identification
and replacement.
First example

Thisis arepresentative example in that 1) theided
case and proposed method generated a spectrum
showing zero or minimal skirts as can be seen from
Figure 3 and Figure 6, 2) these two methods and the
3rd method al produced accurate measurements of the
signa SFDR, as can be seen from Figures 3, 5, and 6,
3) sraightforward application of DFT suffered from
large errors due to non-coherency, as is easily seen
from Figure 4. The true SFDR of the signa is
computed analytically in continuous time domain. A
time domain illustration of the coherent and non-
coherent data samples is shown in Figure 2. It is
particularly worth pointing out that the proposed
method (Figure 6) is subject to al sorts of non-
idealities whereas in Figure 3 everything isideal.

Coherent (0) and noncoherent (*) samples
15 T T T T T
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0
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values of the sampled input
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time index of the samples
Figure2. Time domain data samples from coherent and
non-coherent sampling

With perfectly coherent sampling
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Figure 3. Spectrum from ideal coherent sampling

Before any coherency correction
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Figure 4 Straightforward application of DFT to non-
coherent data samples

After adjusting the data record length

ADC]|resolution: 16
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Figure 5. DFT with non-coherent samples with best
datarecord length

After coherency correction
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S e L
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Figure 6. The proposed method: non-coherent samples,
best data length, and 1st harmonic replacement

Second example

From our experience of large numbers of
simulations, the situation illustrated in the first example
is the most commonly seen. This means in many
situations the signa spectral distortion can be
computed to a sufficient accuracy by following part of
the procedures described in the proposed method so
that an appropriate data record length is selected to
approximately match the coherent sampling condition.
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In such cases, the skirting is not removed from the
spectrum and therefore the signal spectrum is not
correctly computed, but the error due to skirting is not
large enough to dominate the harmonic distortion
components. However, with a relatively small but
certainly not small enough to be negligible probability,
a situation can happen that the un-corrected skirting is
still too large for the correct testing of harmonic
distortion in the signal. The second example illustrates
this situation. In this example the signal frequency is
relatively high as compared to the Nyquist frequency.
Hence the signal phase changes very quickly with the
index. This makes it more difficult to find a data record
length that is very close to being coherent. Figure 7
illustrate the time domain data samples from coherent
and non-coherent sampling. As is from the previous
example, the straight forward application of FFT to the
non-coherent samples produced a spectrum that is
totally dominated by the spectral |eakage effect and the
signa distortion cannot be correctly measured, see
Figure 8. By following partially the procedures of the
proposed method to select an approximately coherent
data record length, the skirting effect due to non-
coherency is greatly reduced as can be seen from
Figure 9. However, the skirt is still above the harmonic
distortion component level and also significantly above
the noise floor of the 15-bit ADC. The spectrum in
deed looks quite different from the correct spectrum in
Figure 10 which is obtained using perfect coherent
sampling in an idea testing environment. Fortunately,
the proposed method with base harmonic identification
and replacement is till capable of removing the
skirting effect and producing a spectrum (see Figure
11) that is essentialy the same as that in Figure 10.
Again, the proposed method worked with non-coherent
data samples and the testing environment is subject to
various non-idealities. The computation requirement is
only slightly larger. This clearly demonstrates both the
efficacy and the robustness of the proposed method.

Coherent (0) and noncoherent (*) samples
1 T T k= T T T T

0.5F
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! \

-0.5F

values of the sampled input
o
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Figure 7. Data samples from coherent and non-
coherent sampling
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Figure 11. The proposed method: non-coherent
samples, best datalength, and 1st harmonic
replacement

5. Experimental Results
Since the proposed method exhibited excellent
spectral performance with sufficient robustness to
various error sources, we wanted to validate the
algorithms with experimental data. Figure 12 is the
time domain representation of the captured data. The
datais collected in an industry setting. Although we are
not in a position to talk about details of how the datais
collected but it suffices to say that it is supposed to be
discarded. The data was sampled non-coherently and
the signa was dlightly clipped at both the top and the
bottom. A small zoomed-in piece is show in Figure 13

in which one can see the clipping at the top.

Segment of raw data used in linearity estimation
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Figure 12 Raw data of non-coherent samples of sine
wave slightly clipped at the top and bottom

To anayze the spectral contents of the signal, one
can straight forwardly apply DFT to the raw data. The
resultant spectrum is shown in Figure 14. The clearly
visible skirting completely dominates any harmonic
distortion components that may be present. Hence no
testing information is obtained.

Next the proposed method was applied to analyze
the spectral contents of the captured signal. The
resultant spectrum is shown in Figure 15. Notice that
al skirting effects have been removed and the noise
floor has been pushed down to the —100dB level. Rich
spectral contents are clearly shown.

Since the signal has not been coherently sampled,
we do not know what the true spectrum of the signal is.
However we do know that the signal is a nice clean
sine wave clipped at the top and bottom. By adjusting
the amount of clipping, we can create a clipped sine
wave whose true spectrum is shown in Figure 16. It
exhibits very similar spectra characteristics to those in
Figure 15. Therefore we believe that the spectrum
shown in Figure 15 is indeed the true spectrum of the
signal being captured.
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Figure 13. A zoomed in piece showing clipping at the
extremes.
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Figure 15. Spectrum of the captured signal using the
proposed method
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Figure 16. True spectrum of a sine wave with clipping
at the top and bottom
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In addition to the spectral information about the
signal, Figure 15 also reveals some information about
the linearity of the underlining digitizer. Notice that the
harmonic distortion spectra lines due to clipping have
a nice smooth envel ope resembling a sinc function. The
highest harmonics spectra line that deviates from this
nice envelope is around the -85dB level. This
deviation is due to the addition of distortion from the
digitizer and it means that the digitizer is likely to have
a SFDR near the 85dB level. In deed the digitizer used
to capture the data is a 14 bit ADC. The use of the
proposed method in testing ADC spectral performance
is currently under study.

6. Statistical Perfor mance Study

In the simulation results section, we have
mentioned that the simulation program is set up so that
many non-ideal factors are randomly generated and
many runs with different randomly generated
parameters have been tested. There is one
phenomenon, though not frequent, that caught our
atention. That is, once in a great while very large
SFDR testing error is produced with the proposed
method. We decided to perform some extensive
statistical anaysis to figure out what the causeis. Well
over 10000 runs were conducted with various
randomly generated parameters such as input signa
frequency, digitizer resolution, the size of the fractional
period in the data record, total data record length, the
amount of signal magnitude errors, initial
synchronization errors, additive measurement noise,
and so on. Correlation between the signal SFDR testing
errors and various controlled parameters was studied.
We also studied the correlation to the accuracy in Ay, A,
and O estimation. Because of page limitation, we
cannot discuss al of our findings here. But it is
sufficient to point out that the proposed method is very
insensitive to al the parameters that we studied except
for one: the ratio of the input signal frequency to the
sampling clock frequency. Figure 17 contains data
from over 10000 runs. The horizontal axis is the ratio
of input signa frequency to clock frequency as a
percentage. The vertical axisis the signal SFDR testing
error from each run. Clearly, when the signal frequency
is very close or above the digitizer's Nyquist
frequency, the SFDR measurement errors are usualy
large. There are aso certain signa frequencies, for
example exactly 1/3 or ¥ of the clock frequency, for
which the proposed method does not work. In
hindsight, the reason is simple. In such cases, one or
more of the harmonic frequencies or their aliased
versions become exactly equal to some other harmonic
frequencies. When this happens, correct measurements
cannot be obtained. We also want to point out that at
these frequencies, the perfect coherent sampling with
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ideal  environment cannot guarantee  correct
measurement of the signal spectral performance either.
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Figure 17 Correlation of SFDR estimation error to
signal frequency from over 10K random runs

Based on the findings from the statistical study, we
recommend that certain signal and clock frequency
combinations should be avoided if the ratio f;/fs can be
reduced to arational number with small integers. Next,
we coded this requirement into the code where random
input frequencies are generated so that no such
frequencies are generated. The generated frequency is
rounded to a nearest coherent frequency for use in the
benchmark ideal case for comparison. We aso avoided
using extremely low frequencies, since it is known that
a very low frequencies parameter identification
accuracy is difficult to maintain. [7]

Simulation of 1000 cases that avoid inappropriate
frequencies was conducted. Figure 18 illustrates the
signal SFDR testing errors when the proposed method
is used. Again the horizonta axis is the input signal
frequency to clock frequency ratio. Notice that in all
1000 runs, the SFDR errors are within +4dB. For
comparison, Figure 19 illustrates the SFDR testing
errors for the same 1000 cases when the ideal perfect
coherent sampling is used. For this method, thereis one
case when the frequency was rounded, it became a
degenerate frequency of exactly ¥ of clock frequency.
The testing result for this case was totaly off. There
are two other cases when the frequencies were
rounded, they became those frequencies that should
have been avoided. Other than these three cases, the
ided perfect coherent sampling method performed just
as well as or dlightly better than the proposed method.
Figure 20 illustrates the results when DFT is straight
forwardly applied. It can be clearly concluded that such
a method cannot be used for non-coherently sampled
data. Figure 21 illustrates the results by partialy
following the procedures described in this paper to
select the most suitable data record length but without
first harmonic replacement. It can be seen that for a
large percentage of the cases, this method produced
sufficiently small testing errors.



Table 1 summarizes the statistics of these
comparative study results.
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Figure 18. SFDR testing errorsin 1000 runs using the
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Figure 19. SFDR testing errorsin 1000 runs using the
perfect coherent sampling in the ideal case
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Figure 20. SFDR testing errorsin 1000 runs non-
coherent sampling in the standard approach
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Figure 21. SFDR testing errorsin 1000 runs using non-
coherent samples with best data length

Table 1 Summary of SFDR test errorsin 1000 runs

Ideal |Standard |Bestlength |Proposed
min  |-8.33 |-5.26 -16.35 -4.01
max [91.1 [103.2 32.19 3.52
mean |0.01 |[34.75 0.61 0.17
std [3.08 |15.80 2.63 0.91

*|deal case was skewed by three bad data points,
would have been comparable to proposed case if those
bad points were excluded

Conclusion

A new method for accurate spectra performance
testing is presented that does not require coherent
sampling or the use of windowing. The proposed
method achieves SFDR testing performance
comparable to ideal perfect coherent sampling.
Extensive simulation study and statistical performance
analysis have been conducted. The method is
demonstrated to be very robust to various sources of
errors. The computational efficiency of the agorithm is
excellent with only slightly more computations than
FFT. However, the method is vulnerable when the
signa frequency is near the Nyquist frequency or at
certain degenerate frequencies for which even DFT
with ideal perfect coherent sampling cannot work well.
Therefore, the proposed method offers comparable
performance to FFT with perfect coherent sampling but
without requiring coherent sampling.
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