

Abstract: This paper presents a self-calibration method
for designing high speed pipeline ADCs. Unlike all existing
calibration algorithms, the proposed calibration does not insert
any test signal or dithering signals to the pipeline signal path
and it does not take any measurements at any internal nodes. It
simply observes the ADC output digital codes during the
normal operation of the ADC and extracts needed information
about the ADC to generate the correction codes. This process
is done adaptively and the correction codes are improved
gradually as the ADC is being used for a longer time.
Simulation results show that a 14-bit ADC with 7 bit original
performance was gradually improved to close to 14 bit
performance.

Index Terms— ADC Design, Background Calibration,
Adaptive Calibration

I. INTRODUCTION
IPELINE ADCs continue to be the architecture of choice for
high speed and high resolution analog to digital
conversion in communications, signal processing, and

other demanding applications. To achieve moderate to high
effective resolutions and high speed operation, calibration of
one form or another or laser trimming is normally required.
For example, 12 to 14 bit resolution may be achievable
without calibration or trimming at sampling rate around a few
MSPS. However, achieving even 10 – 12 bit effective
resolution at 100 to 200 MSPS clock rates is a very
challenging task without calibration or trimming. The higher
clock rates necessarily require small capacitive loads and
small parasitics which require small device sizes. The reduced
device sizes inevitably lead to poor matching which limits the
achievable effective resolution without calibration. On the
other hand, the trend in the market place is clearly pushing
towards very high-speed, high-volume, low-cost ADCs in both
stand alone and embedded applications. The low cost
requirement rules out laser trimming and it also makes on-chip
fuses or ROM unattractive. Consequently, feasible candidates
of calibration algorithms should require minimal area
overhead and can perform real time background calibration.

Numerous techniques have been developed to improve
the linearity of high-speed ADCs. Among them, the error
averaging [1], reference feed forward [2], walking reference
[3], and ratio-independent methods [4] are analog approaches,
while calibration [5–8] and over sampling [9] are digital
approaches. The analog approaches tend to be simpler, but the
digital approaches are more flexible. Most Nyquist-rate high-
resolution ADC works are based on variations of the pipelined
architecture. However, all existing calibration techniques
relies on applying certain stimulus signals to the ADC,
measuring the ADC’s output response, and comparing the
response to its expected counter part to generate calibration
codes. In this paper, we introduce a novel calibration approach
for building high speed pipeline ADCs. The novelty is
embodied in the following features: 1) it uses no stimulus

input signals, 2) it take no internal measurements, 3) it never
interferes with the ADC’s normal operation, 4) its calibration
accuracy gets better as the ADC is being used for longer time.

Due to space limitations, we won’t be able to completely
describe the calibration algorithm and the ADC design
procedure in general terms. In the next section we will
illustrate the basic principles by walking through a conceptual
ADC design and calibration example. In section 3, we will
present simulation results to demonstrate how the proposed
calibration approach adaptively improves the ADC
performance as the ADC is being used.

II. ADAPTIVE BACKGROUND CALIBRATION
The following steps illustrate a practical implementation

of a truly background, self adapting, self-calibration method
for high speed ADC design with moderate resolution. If
parasitic nonlinearities are small, the major source of
nonlinearity in the transfer characteristics of a pipelined ADC
is attributable to incorrect interpretation of the digital output
codes. This is caused by gain errors in the inter-stage
amplifiers as well as by offset errors and DAC errors. These
errors are all completely correctable if over-range protection is
provided. If sufficient over-range protection is provided, these
errors cause discontinuities in the output codes provided by
the ADC. The ADC will be calibrated if these discontinuities
can be removed.

We now use the following example to illustrate an
efficient method for eliminating these discontinuities in the
background without requiring training sequences or elaborate
calibration hardware. For simplicity, let us consider a 10 bit
pipeline ADC as an example.

First we design the pipeline with achieving the highest
clock rate as the dominant focus, with minimal regard to
matching accuracy. Suppose the process can provide 7 bit
matching accuracy for small devices. The first 3 bits (MSB) of
the ADC are pipelined with 1 comparator per stage. Size the
nominal values of the capacitor ratios so that nominally the 3rd
stage has 1 missing code when it transitions from 0 to 1, the
2nd stage has 2 missing codes, and the 1st stage has 4 missing
codes. This gives 7 discontinuities in the ADC transfer curve.
These discontinuities are created by making the inter-stage
amplifier gains intentionally a little less than 2 to provide
over-range protection.

Use 8 RAM cells to store the error correction codes for
the 8 continuous segments of the transfer curve. Each cell is 4
bits wide. It is increased beyond the nominal 3 bits to allow
for compensation of process variations. The 3 MSBs of the
ADC raw code will be used to address the 8 cells.

At initial power up, the 8 cells will be set to equal to the
nominal values of the 8 correction codes based on the 7
nominal discontinuities in the transfer curve. For the 7 gap
sizes mentioned above, the 8 initial correction codes would be
+6, +5, +3, +2, -2, -3, -5, -6 respectively.

During ADC operation, the 3 MSB of the ADC raw code

Degang Chen, Zhongjun Yu, Randy Geiger

An Adaptive, Truly Background Calibration Method
for High Speed Pipeline ADC Design

P

61900-7803-8834-8/05/$20.00 ©2005 IEEE.

are used to fetch the corresponding correction code which is
then added to the raw code to form the corrected code as the
ADC output code. For the above example, this process
nominally shifts the first 1/8 segment of the DC transfer curve
up by 6 LSB, the second 1/8 segment up by 5 LSB, the third
1/8 segment by 3 LSB, and so on. This will make the nominal
transfer curve continuous.

Seven pairs of “compare and store” circuits will be
provided, one pair for each of the 7 expected gaps in the actual
transfer curve. For example, the first gap happens when the
ADC code transitions from 000xxxxxxx to 001xxxxxxx. In
each clock cycle, the first “compare and store” circuit
compares the ADC raw code (if it is of the form 000xxxxxxx)
against its stored value and updates the stored value to be the
larger of the two. Hence, at any time point, the first “compare
and store” circuit is holding the largest observed code in the
first 1/8 (of the form 000xxxxxxx) of the transfer curve.
Similarly, the second “compare and store” circuit is holding
the smallest observed code in the second 1/8 (of the form
001xxxxxxx) of the transfer curve, the third is holding the
largest observed code in the second 1/8 (of the form
001xxxxxxx) of the transfer curve, the fourth holding the
smallest observed code in the third 1/8 (of the form
010xxxxxxx) of the transfer curve, and so on. These
“compare and store” circuits are essentially determining the
number of missing codes at the corresponding major transition
points. This information will later be used to remove the
missing codes.

After a significant number of clock cycles (say one
million), it is assumed that the actual largest and smallest
codes in every 1/8 segment of the transfer curve will have all
been hit. This should be a reasonable assumption if the ADC
is used in a communications or signal processing circuit in
which the ADC input is an AC signal ranging at least +-3/4 of
the ADC input range. Therefore, the “compare and store”
circuits are holding the true largest and smallest codes of each
1/8 segment of the transfer curve, and the differences (for
example, the smallest code in 001xxxxxxx minus the largest
code in 000xxxxxxx, and the smallest code in 010xxxxxxx
minus the largest code in 001xxxxxxx, etc) are the true gap
sizes in the actual transfer curve of the ADC in operation.

The measured true gap sizes will be used to adaptively
update the correction codes. For example, a simple adaptation
law could be of the form: (new code) = (old code)*(1-lamda)
+ (observation based code)*lamda, where (old code) is the
correction code that is currently in effect, (new code) is the
updated correction code to be used starting now, the
(observation based code) is the code computed based on the
observed gap sizes, and lamda (selected by the designer) is < 1
but > 0 that controls the adaptation speed.

A simple binary counter can be used to decide when a
new update is to be performed. For example, if an update of
every one million clock cycles is desired, then a 20 bit counter
can be used. The overflow signal can act as the trigger for
code update and the over flow also resets the counter to zero.

In the actual design, the nominal gap sizes and the
corresponding nominal correction codes may be different from
the ones given as examples above. These nominal values for
obtaining a desired yield can be obtained from circuit level
simulation after the amplifiers and capacitors have been

designed.
If only 6 bit matching (rather than the 7 bits used in the

above example) can be guaranteed, then the first 4 bits should
have over-range protection with nominal gains less than two.
Then there will be 15 nominal gaps in the transfer curve,
dividing the curve into 16 segments. Then, 16 correction codes
will be used, one code for each of the segments. Alternatively,
if more than 10 bit resolution is needed, the number of gaps
and the number of segments will be similarly increased. If the
comparator offsets are not significant so that each segment is
of approximately the same length, then the algorithm can be
modified so that only one gap size associated with each
comparator needs to be determined. This will significantly
reduce the number of “compare and store” circuits and
simplify the calibration logic circuit.

This is a truly background calibration and the ADC
operation is never interrupted. This is an input-output based
calibration, calibrating the true ADC signal path. There is no
insertion of a test signal or measurement at any internal node.
In contrast, most existing algorithms insert a test signal into
the pipeline or take measurement at internal nodes. By doing
so, these existing algorithms are actually calibrating an altered
pipeline due to signal insertion and measurement. There is no
need for a precision signal generator or pseudorandom signal
generator since the suggested method is based on observing
the actual operation of the ADC. The algorithm is easy to
implement, requiring small hardware and software overhead.

III. SIMULATION RESULTS
For the simulation results presented here, the ADC has 14

bits of raw resolution. Its architecture contains 10 single-bit
subradix-2 stages followed by a 4-bit flash stage. The flash
stage has random errors in transition levels, but still has better
than 4-bit linearity. Capacitor matching accuracy is at the 9 bit
level. Comparator offsets are at the 7 bit level. Over range
protection is set at 1%. Amplifier gains are 74 – 94 dBs.
Amplifier linearity is at 11-bit linear or better.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

ADC output codes

A
D
C
 D

N
L k in

 L
S
B

Green: DNL based on transition interval width for each code

Figure 1 ADC DNL before calibration

As expected, Figure 1 shows that many codes have DNLk
= – 1, which means code width = 0, which means that a code
is actually missing. Hence, there are many missing codes.
Groups of missing codes manifest as jump-ups in the ADC
transfer curve and as vertical jump-downs in the INL curve as
seen in Figure 2. These happen near the major transitions as
expected. Also notice that there are no jump-ups in the INL
curve, which means that there are no jump-downs in the ADC
transfer curve. Hence, the ADC has monotonic transfer
characteristics. This is the benefit of using subradix-2 gain
stages for over range protection. The vertical jump-ups or gaps
in the ADC transfer curve do not cause information loss.

6191

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-50

-40

-30

-20

-10

0

10

20

30

40

50

ADC output codes

A
D
C
 I
N
L k a

t
ou

tp
ut
 c
od

e
k

ADC INL_k as difference between fit-line \n and DC transfer curve

Figure 2 ADC INL before calibration

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

20

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Before adaptation/calibration turned on

Figure 3 ADC spectral performance before calibration
Because of the 1% over range protection and because of

the 9-bit level capacitor matching, the ADC before calibration
has only about 7 bit INL performance or the transfer curve is
only about 7 bit linear. We would expect the total harmonic
distortion of the ADC to be somewhere near the 7 bit level or
at the – 44 dB level. Figure 3 indicates that the ADC has about
54 dB SFDR performance, which is consistent with what we
would expect based on component matching accuracy.

Then the self-adaptive self calibration capability was
turned on. No testing signal or internal measurement is used
for the generation of the calibration code. The self-adaptive
self calibration algorithm simply watches and analyzes the
ADC output codes while the ADC is being used for regular
conversion. To reduce the waiting time, the algorithm in this
simulation is set to update the adaptive calibration codes every
2048 clock cycles. In real implementation, the update time can
be set to be much longer to better average out noise effect. In
this simulation, a sine wave is input to the ADC, which is
unknown to the algorithm. Only the raw ADC output codes
are available to the algorithm for analysis.

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 1*2048 samples

Figure 4 ADC spectral performance after 2048 samples
After the ADC is being used for 2048 clock cycles and

the calibration code is updated for the first time, the
calibration codes are frozen and the ADC’s spectral
performance is tested again as shown in Figure 4. Notice that
the ADC SFDR performance has been improve to about 64

dB. That is a 10 dB improvement in SFDR after 2048 clock
cycles of normal ADC use.

Then the adaptive self-calibration algorithm is turned
back on and the ADC is set to resume its normal conversion.

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 2*2048 samples

Figure 5 ADC spectral performance after 4096 samples
After another 2048 clock cycles, the calibration codes are

updated for the second time. Then the calibration codes are
frozen again and the ADC’s spectral performance is tested
again as shown in Figure 5. Notice that the ADC SFDR
performance is still at about 64 dB. Hence, between the first
and second updates, the ADC spectral performance does not
exhibit any improvements, even though the actual calibration
codes may have been changed. This should not be surprising
since a 2048 point FFT does not hit all ADC codes.

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 4*2048 samples

Figure 6 ADC spectral performance after 8196 samples

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 8*2048 samples

Figure 7 ADC spectral performance after 8*2048 samples

After another 4096 clock cycles and after the calibration
codes are updated for the forth time, the calibration codes are
frozen again and the ADC’s spectral performance is tested
again, as shown in Figure 6. Notice that the ADC SFDR
performance is now at about 68 dB and the other harmonic
components are also reduced to lower levels. Therefore the
adaptation is seen to be working.

Another 4*2048 clock cycles later, the calibration codes
are updated for the eighth time. The calibration codes are
frozen again and the ADC’s spectral performance is tested
again. Figure 7 shows that the ADC SFDR performance is

6192

now at about 83 dB and the other harmonic components are
also reduced to significantly lower levels. This further
confirms that the self-adapting self-calibration algorithm is in
deed working effectively.

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

20

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 16*2048 samples

Figure 8 ADC spectral performance after 16*2048 samples

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

20

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 50*2048 samples

Figure 9 ADC spectral performance after 50*2048 samples

At the end after 16*2048 and 50*2048 clock cycles of
regular ADC normal conversion, the calibration codes are
updated for the 16th and 50th times respectively. The
calibration codes are frozen at those times and the ADC’s
spectral performance is tested again. Figures 8 and 9 show that
the ADC SFDR performance has been improved to about 88
dB and 94 dB respectively. The other harmonic distortion
components are also reduced to significantly lower levels.

In fact, after about 30*2048 clock cycles of ADC
conversion, the ADC linearity performance has been improved
to a level that is similar to a 14-bit linear ADC. Further
adaptation is in-effective in further improving the ADC
linearity performance. However, if the ADC has aged, or the
operating environment has changed, or something else has
caused the ADC to change, we would expect the self-
adaptation mechanism to kick in and adaptively converge to
the correct calibration codes.

Figures 10 and 11 show the DNL and INL performance
after the ADC has been calibrated. Notice that there are no
codes with DNL= – 1 and therefore no missing codes.

IV. CONCLUSION
In this paper, we have introduced a novel calibration

method for high speed pipeline ADC design. The calibration
algorithm is a truly background self-calibration algorithm. It
distinguishes itself from all existing algorithms by not needing
any testing signal or internal measurements and by having the
capability of gradually improving its own linearity
performance as the ADC is being used for longer time.
Simulation results demonstrated that DNL, INL, as well as
spectral performance can be improved 7 bit level to 14 bit

level. Both hardware and software overhead is relatively
small. Simple implementation schemes have been illustrated.

0 2000 4000 6000 8000 10000 12000 14000 16000
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

ADC output code

D
N
L k in

 L
S
B

After calibration DNLk performance

Figure 10 ADC DNL after sufficiently long use

0 2000 4000 6000 8000 10000 12000 14000 16000
-1.5

-1

-0.5

0

0.5

1

1.5

ADC output code

IN
L k in

 L
S
B

After calibration INLk performance

Figure 11 ADC INL after sufficiently long use

REFERENCES
[1] B.-S. Song, M. Tompsett, and K. Lakshmikumar, “A 12-bit 1-

MSample/s capacitor error-averaging pipelined A/D converter,” IEEE J.
Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988.

[2] S. Sutarja and P. R. Gray, “A pipelined 13-bit 250-ks/s 5-V analog-to
digital converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1316–1323,
Dec. 1988.

[3] D. A. Kerth, N. S. Sooch, and E. J. Swanson, “A 12-bit 1-MHz two-step
flash ADC,” IEEE J. Solid-State Circuits, vol. 24, pp. 250–255, Apr.
1989.

[4] J. Wu, B. Jeung, and S. Sutarja, “A mismatch independent DNL-
pipelined analog to digital converter,” in Proc. IEEE Int. Symp. Circuits
and Systems, vol. 5, 1994, pp. 461–464.

[5] T.-H. Shu, B.-S. Song, and K. Bacrania, “A 13-b 10-MSample/s ADC
digitally calibrated with over sampling delta–sigma converter,” IEEE J.
Solid-State Circuits, vol. 30, pp. 443–452, Apr. 1995.

[6] S.-U. Kwak, B.-S. Song, and K. Bacrania, “A 15-b 5-MSample/s low-
spurious CMOS ADC,” IEEE J. Solid-State Circuits, vol. 32, pp. 1866–
1875, Dec. 1997.

[7] M.-J. Choe, B.-S. Song, and K. Bacrania, “A 13-b 40-MSample/sCMOS
pipelined folding ADC with background offset trimming,” in ISSCC
Dig. Tech. Papers, 2000, pp. 36–37.

[8] C. Moreland, M. Elliott, F. Murden, J. Young, M. Hensley, and R. Stop,
“A 14-b 100-MSample/s 3-stage A/D converter,” in ISSCC Dig. Tech.
Papers, 2000, pp. 34–35.

[9] S. A. Paul, H.-S. Lee, J. Goodrich, T. F. Alailima, and D. D. Santiago,
“A Nyquist-rate pipelined over sampling A/D converter,” IEEE J. Solid-
State Circuits, vol. 34, pp. 1777–1787, Dec. 1999.

6193

	MAIN MENU
	Front Matter
	Table of Contents
	Session Chair Index
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

