
 

Abstract: This paper presents a self-calibration method 
for designing high speed pipeline ADCs. Unlike all existing 
calibration algorithms, the proposed calibration does not insert 
any test signal or dithering signals to the pipeline signal path 
and it does not take any measurements at any internal nodes. It 
simply observes the ADC output digital codes during the 
normal operation of the ADC and extracts needed information 
about the ADC to generate the correction codes.  This process 
is done adaptively and the correction codes are improved 
gradually as the ADC is being used for a longer time. 
Simulation results show that a 14-bit ADC with 7 bit original 
performance was gradually improved to close to 14 bit 
performance. 

Index Terms— ADC Design, Background Calibration, 
Adaptive Calibration 

I. INTRODUCTION 
IPELINE ADCs continue to be the architecture of choice for 
high speed and high resolution analog to digital 
conversion in communications, signal processing, and 

other demanding applications. To achieve moderate to high 
effective resolutions and high speed operation, calibration of 
one form or another or laser trimming is normally required. 
For example, 12 to 14 bit resolution may be achievable 
without calibration or trimming at sampling rate around a few 
MSPS. However, achieving even 10 – 12 bit effective 
resolution at 100 to 200 MSPS clock rates is a very 
challenging task without calibration or trimming. The higher 
clock rates necessarily require small capacitive loads and 
small parasitics which require small device sizes. The reduced 
device sizes inevitably lead to poor matching which limits the 
achievable effective resolution without calibration. On the 
other hand, the trend in the market place is clearly pushing 
towards very high-speed, high-volume, low-cost ADCs in both 
stand alone and embedded applications. The low cost 
requirement rules out laser trimming and it also makes on-chip 
fuses or ROM unattractive. Consequently, feasible candidates 
of calibration algorithms should require minimal area 
overhead and can perform real time background calibration.  

Numerous techniques have been developed to improve 
the linearity of high-speed ADCs. Among them, the error 
averaging [1], reference feed forward [2], walking reference 
[3], and ratio-independent methods [4] are analog approaches, 
while calibration [5–8] and over sampling [9] are digital 
approaches. The analog approaches tend to be simpler, but the 
digital approaches are more flexible. Most Nyquist-rate high-
resolution ADC works are based on variations of the pipelined 
architecture. However, all existing calibration techniques 
relies on applying certain stimulus signals to the ADC, 
measuring the ADC’s output response, and comparing the 
response to its expected counter part to generate calibration 
codes. In this paper, we introduce a novel calibration approach 
for building high speed pipeline ADCs. The novelty is 
embodied in the following features: 1) it uses no stimulus 

input signals, 2) it take no internal measurements, 3) it never 
interferes with the ADC’s normal operation, 4) its calibration 
accuracy gets better as the ADC is being used for longer time. 

Due to space limitations, we won’t be able to completely 
describe the calibration algorithm and the ADC design 
procedure in general terms. In the next section we will 
illustrate the basic principles by walking through a conceptual 
ADC design and calibration example. In section 3, we will 
present simulation results to demonstrate how the proposed 
calibration approach adaptively improves the ADC 
performance as the ADC is being used.  

II. ADAPTIVE BACKGROUND CALIBRATION 
The following steps illustrate a practical implementation 

of a truly background, self adapting, self-calibration method 
for high speed ADC design with moderate resolution. If 
parasitic nonlinearities are small, the major source of 
nonlinearity in the transfer characteristics of a pipelined ADC 
is attributable to incorrect interpretation of the digital output 
codes.  This is caused by gain errors in the inter-stage 
amplifiers as well as by offset errors and DAC errors.  These 
errors are all completely correctable if over-range protection is 
provided. If sufficient over-range protection is provided, these 
errors cause discontinuities in the output codes provided by 
the ADC.  The ADC will be calibrated if these discontinuities 
can be removed. 

We now use the following example to illustrate an 
efficient method for eliminating these discontinuities in the 
background without requiring training sequences or elaborate 
calibration hardware. For simplicity, let us consider a 10 bit 
pipeline ADC as an example. 

First we design the pipeline with achieving the highest 
clock rate as the dominant focus, with minimal regard to 
matching accuracy. Suppose the process can provide 7 bit 
matching accuracy for small devices. The first 3 bits (MSB) of 
the ADC are pipelined with 1 comparator per stage. Size the 
nominal values of the capacitor ratios so that nominally the 3rd 
stage has 1 missing code when it transitions from 0 to 1, the 
2nd stage has 2 missing codes, and the 1st stage has 4 missing 
codes. This gives 7 discontinuities in the ADC transfer curve. 
These discontinuities are created by making the inter-stage 
amplifier gains intentionally a little less than 2 to provide 
over-range protection. 

Use 8 RAM cells to store the error correction codes for 
the 8 continuous segments of the transfer curve. Each cell is 4 
bits wide.  It is increased beyond the nominal 3 bits to allow 
for compensation of process variations. The 3 MSBs of the 
ADC raw code will be used to address the 8 cells. 

At initial power up, the 8 cells will be set to equal to the 
nominal values of the 8 correction codes based on the 7 
nominal discontinuities in the transfer curve. For the 7 gap 
sizes mentioned above, the 8 initial correction codes would be 
+6, +5, +3, +2, -2, -3, -5, -6 respectively. 

During ADC operation, the 3 MSB of the ADC raw code 
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are used to fetch the corresponding correction code which is 
then added to the raw code to form the corrected code as the 
ADC output code. For the above example, this process 
nominally shifts the first 1/8 segment of the DC transfer curve 
up by 6 LSB, the second 1/8 segment up by 5 LSB, the third 
1/8 segment by 3 LSB, and so on. This will make the nominal 
transfer curve continuous. 

Seven pairs of “compare and store” circuits will be 
provided, one pair for each of the 7 expected gaps in the actual 
transfer curve. For example, the first gap happens when the 
ADC code transitions from 000xxxxxxx to 001xxxxxxx. In 
each clock cycle, the first “compare and store” circuit 
compares the ADC raw code (if it is of the form 000xxxxxxx) 
against its stored value and updates the stored value to be the 
larger of the two. Hence, at any time point, the first “compare 
and store” circuit is holding the largest observed code in the 
first 1/8 (of the form 000xxxxxxx) of the transfer curve. 
Similarly, the second “compare and store” circuit is holding 
the smallest observed code in the second 1/8 (of the form 
001xxxxxxx) of the transfer curve, the third is holding the 
largest observed code in the second 1/8 (of the form 
001xxxxxxx) of the transfer curve, the fourth holding the 
smallest observed code in the third 1/8 (of the form 
010xxxxxxx) of the transfer curve, and so on.  These 
“compare and store” circuits are essentially determining the 
number of missing codes at the corresponding major transition 
points.  This information will later be used to remove the 
missing codes.  

After a significant number of clock cycles (say one 
million), it is assumed that the actual largest and smallest 
codes in every 1/8 segment of the transfer curve will have all 
been hit. This should be a reasonable assumption if the ADC 
is used in a communications or signal processing circuit in 
which the ADC input is an AC signal ranging at least +-3/4 of 
the ADC input range. Therefore, the “compare and store” 
circuits are holding the true largest and smallest codes of each 
1/8 segment of the transfer curve, and the differences (for 
example, the smallest code in 001xxxxxxx minus the largest 
code in 000xxxxxxx, and the smallest code in 010xxxxxxx 
minus the largest code in 001xxxxxxx, etc) are the true gap 
sizes in the actual transfer curve of the ADC in operation. 

The measured true gap sizes will be used to adaptively 
update the correction codes. For example, a simple adaptation 
law could be of the form: (new code) = (old code)*(1-lamda) 
+ (observation based code)*lamda, where (old code) is the 
correction code that is currently in effect, (new code) is the 
updated correction code to be used starting now, the 
(observation based code) is the code computed based on the 
observed gap sizes, and lamda (selected by the designer) is < 1 
but > 0 that controls the adaptation speed. 

A simple binary counter can be used to decide when a 
new update is to be performed. For example, if an update of 
every one million clock cycles is desired, then a 20 bit counter 
can be used. The overflow signal can act as the trigger for 
code update and the over flow also resets the counter to zero. 

In the actual design, the nominal gap sizes and the 
corresponding nominal correction codes may be different from 
the ones given as examples above.  These nominal values for 
obtaining a desired yield can be obtained from circuit level 
simulation after the amplifiers and capacitors have been 

designed. 
If only 6 bit matching (rather than the 7 bits used in the 

above example) can be guaranteed, then the first 4 bits should 
have over-range protection with nominal gains less than two. 
Then there will be 15 nominal gaps in the transfer curve, 
dividing the curve into 16 segments. Then, 16 correction codes 
will be used, one code for each of the segments. Alternatively, 
if more than 10 bit resolution is needed, the number of gaps 
and the number of segments will be similarly increased. If the 
comparator offsets are not significant so that each segment is 
of approximately the same length, then the algorithm can be 
modified so that only one gap size associated with each 
comparator needs to be determined. This will significantly 
reduce the number of “compare and store” circuits and 
simplify the calibration logic circuit. 

This is a truly background calibration and the ADC 
operation is never interrupted. This is an input-output based 
calibration, calibrating the true ADC signal path. There is no 
insertion of a test signal or measurement at any internal node. 
In contrast, most existing algorithms insert a test signal into 
the pipeline or take measurement at internal nodes. By doing 
so, these existing algorithms are actually calibrating an altered 
pipeline due to signal insertion and measurement. There is no 
need for a precision signal generator or pseudorandom signal 
generator since the suggested method is based on observing 
the actual operation of the ADC. The algorithm is easy to 
implement, requiring small hardware and software overhead. 

III. SIMULATION RESULTS 
For the simulation results presented here, the ADC has 14 

bits of raw resolution. Its architecture contains 10 single-bit 
subradix-2 stages followed by a 4-bit flash stage.  The flash 
stage has random errors in transition levels, but still has better 
than 4-bit linearity. Capacitor matching accuracy is at the 9 bit 
level. Comparator offsets are at the 7 bit level. Over range 
protection is set at 1%. Amplifier gains are 74 – 94 dBs. 
Amplifier linearity is at 11-bit linear or better.  
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Figure 1 ADC DNL before calibration 

As expected, Figure 1 shows that many codes have DNLk 
= – 1, which means code width = 0, which means that a code 
is actually missing. Hence, there are many missing codes. 
Groups of missing codes manifest as jump-ups in the ADC 
transfer curve and as vertical jump-downs in the INL curve as 
seen in Figure 2. These happen near the major transitions as 
expected. Also notice that there are no jump-ups in the INL 
curve, which means that there are no jump-downs in the ADC 
transfer curve. Hence, the ADC has monotonic transfer 
characteristics. This is the benefit of using subradix-2 gain 
stages for over range protection. The vertical jump-ups or gaps 
in the ADC transfer curve do not cause information loss. 
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Figure 2 ADC INL before calibration 
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Figure 3 ADC spectral performance before calibration 
Because of the 1% over range protection and because of 

the 9-bit level capacitor matching, the ADC before calibration 
has only about 7 bit INL performance or the transfer curve is 
only about 7 bit linear. We would expect the total harmonic 
distortion of the ADC to be somewhere near the 7 bit level or 
at the – 44 dB level. Figure 3 indicates that the ADC has about 
54 dB SFDR performance, which is consistent with what we 
would expect based on component matching accuracy. 

Then the self-adaptive self calibration capability was 
turned on. No testing signal or internal measurement is used 
for the generation of the calibration code. The self-adaptive 
self calibration algorithm simply watches and analyzes the 
ADC output codes while the ADC is being used for regular 
conversion. To reduce the waiting time, the algorithm in this 
simulation is set to update the adaptive calibration codes every 
2048 clock cycles. In real implementation, the update time can 
be set to be much longer to better average out noise effect. In 
this simulation, a sine wave is input to the ADC, which is 
unknown to the algorithm. Only the raw ADC output codes 
are available to the algorithm for analysis. 
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Figure 4 ADC spectral performance after 2048 samples 
After the ADC is being used for 2048 clock cycles and 

the calibration code is updated for the first time, the 
calibration codes are frozen and the ADC’s spectral 
performance is tested again as shown in Figure 4. Notice that 
the ADC SFDR performance has been improve to about 64 

dB. That is a 10 dB improvement in SFDR after 2048 clock 
cycles of normal ADC use. 

Then the adaptive self-calibration algorithm is turned 
back on and the ADC is set to resume its normal conversion. 
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Figure 5 ADC spectral performance after 4096 samples 
After another 2048 clock cycles, the calibration codes are 

updated for the second time. Then the calibration codes are 
frozen again and the ADC’s spectral performance is tested 
again as shown in Figure 5. Notice that the ADC SFDR 
performance is still at about 64 dB. Hence, between the first 
and second updates, the ADC spectral performance does not 
exhibit any improvements, even though the actual calibration 
codes may have been changed. This should not be surprising 
since a 2048 point FFT does not hit all ADC codes. 

0 200 400 600 800 1000 1200
-140

-120

-100

-80

-60

-40

-20

0

Frequency bin (0 to Nyquist frequency)

A
D
C
 s
pe

ct
ra
l p

er
fo
rm

an
ce

Spectral performance after ADC being used for 4*2048 samples

 
Figure 6 ADC spectral performance after 8196 samples 
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Figure 7 ADC spectral performance after 8*2048 samples 

After another 4096 clock cycles and after the calibration 
codes are updated for the forth time, the calibration codes are 
frozen again and the ADC’s spectral performance is tested 
again, as shown in Figure 6. Notice that the ADC SFDR 
performance is now at about 68 dB and the other harmonic 
components are also reduced to lower levels. Therefore the 
adaptation is seen to be working. 

Another 4*2048 clock cycles later, the calibration codes 
are updated for the eighth time. The calibration codes are 
frozen again and the ADC’s spectral performance is tested 
again. Figure 7 shows that the ADC SFDR performance is 
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now at about 83 dB and the other harmonic components are 
also reduced to significantly lower levels. This further 
confirms that the self-adapting self-calibration algorithm is in 
deed working effectively. 
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Figure 8 ADC spectral performance after 16*2048 samples 
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Figure 9 ADC spectral performance after 50*2048 samples 

At the end after 16*2048 and 50*2048 clock cycles of 
regular ADC normal conversion, the calibration codes are 
updated for the 16th and 50th times respectively. The 
calibration codes are frozen at those times and the ADC’s 
spectral performance is tested again. Figures 8 and 9 show that 
the ADC SFDR performance has been improved to about 88 
dB and 94 dB respectively. The other harmonic distortion 
components are also reduced to significantly lower levels.  

In fact, after about 30*2048 clock cycles of ADC 
conversion, the ADC linearity performance has been improved 
to a level that is similar to a 14-bit linear ADC. Further 
adaptation is in-effective in further improving the ADC 
linearity performance. However, if the ADC has aged, or the 
operating environment has changed, or something else has 
caused the ADC to change, we would expect the self-
adaptation mechanism to kick in and adaptively converge to 
the correct calibration codes. 

Figures 10 and 11 show the DNL and INL performance 
after the ADC has been calibrated. Notice that there are no 
codes with DNL= – 1 and therefore no missing codes. 

IV. CONCLUSION 
In this paper, we have introduced a novel calibration 

method for high speed pipeline ADC design.  The calibration 
algorithm is a truly background self-calibration algorithm. It 
distinguishes itself from all existing algorithms by not needing 
any testing signal or internal measurements and by having the 
capability of gradually improving its own linearity 
performance as the ADC is being used for longer time. 
Simulation results demonstrated that DNL, INL, as well as 
spectral performance can be improved 7 bit level to 14 bit 

level. Both hardware and software overhead is relatively 
small. Simple implementation schemes have been illustrated. 
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Figure 10 ADC DNL after sufficiently long use 
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Figure 11 ADC INL after sufficiently long use 
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