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Abstract—This work presents a self-calibration algorithm that 
corrects the linearity errors of pipelined ADCs with a sub-
radix architecture, based on the results of simple code density 
tests. The proposed algorithm identifies discontinuities in an 
ADC’s output histogram data, calculates correction codes for 
transitions in pipeline stages, and digitally calibrates ADC’s 
output codes. Simulation results show that the calibration 
algorithm can dramatically improve the linearity performance 
of ADCs. The INL can be reduced from about 1000 LSB to less 
than 1 LSB. Since this algorithm is based on conventional code 
density tests and uses only a few memory cells and simple logic 
circuits to carry out the calibration, this algorithm can be 
easily implemented on chip without introducing much area 
and cost overhead and serving as a self-calibration solution for 
high-speed high-precision pipelined ADCs.  

I. INTRODUCTION 
The pipeline architecture is widely used in high speed, 

high resolution analog-to-digital converter (ADC) design. 
Particularly, the 1b/stage and 1.5b/stage configurations with 
over range protection are often used, because each stage has 
a very simple structure and the requirement on the op amp 
performance is relatively easy to achieve. However, issues 
like capacitor mismatch, comparator offset, charge injection, 
and finite gain and nonlinearity of op amps all limit the 
accuracy of ADC stages. Handling these issues directly is not 
favorable or even not doable. For example, the capacitor 
mismatch or comparator offset can only be reduced at the 
cost of large area consumption, while it is impossible to 
achieve infinite and completely linear op amp gain.  

Over the years, great efforts have been made to improve 
the performance of pipelined ADCs. Error averaging [1] and 
analog calibration [2] techniques were proposed, but these 
techniques require elaborate calibration schemes and 
complex additional circuits which greatly increase the 
difficulty of circuit design. As compared to analog 
calibration, digital calibration is more favored because of its 
simpler calibration scheme, lower complexity, and smaller 
area consumption. Soenen and Geiger proposed an algorithm 
and architecture for digitally calibrating pipelined ADCs [3]. 

The circuit and the calibration scheme were so designed that 
the same hardware used in the calibration mode was used in 
the conversion mode. Karanicolas, Lee, and Bacrania also 
gave a simpler ADC architecture with an applicable digital 
self-calibration scheme [4]. All the previously reported 
digital calibration schemes inevitably need modification of 
the pipeline stages to allow external control during the 
calibration phase. This is not amenable, because calibrations 
which require disturbance of the pipeline may introduce 
errors by themselves, especially when the ADC’s resolution 
is high, and architecture specific calibrations are not 
applicable to ADCs of different architectures. 

This paper presents a new digital algorithm for 
calibrating pipelined ADCs. The calibration algorithm is 
based on results of input-output histogram tests so that it 
does not disturb the data path of an ADC during test and not 
require external control of pipeline stages. Correction codes 
are calculated from the discontinuity in the histogram data 
and the digital calibration can be done with a small number 
of memories, an adder and some simple control logics. 
Furthermore, this algorithm does not require a precision 
ramp input for the histogram test. All these features make 
this algorithm applicable for on-chip implementations. 
Simulations show that the INL of an ADC can be reduced 
from about 1000 LSB originally to less than 1 LSB after 
calibration, which is comparable to what the algorithm 
reported in [4] can achieve.  

The rest of the paper is organized as follows. In section 
II, the pipelined architecture is reviewed with mathematical 
descriptions. Section III describes the principle of the digital 
calibration algorithm. Section IV discusses implementation 
issues and Section V gives the simulation results. 

II. PIPELINE ARCHITECTURE AND MODELING 
The pipeline architecture of 1-bit/stage is shown in Fig. 

1. For each stage, the comparator compares the input voltage 
with 0, and gives a 1-bit digital output. The output voltage of 
the stage is determined by the input voltage and the 
comparison result, which can be described as follows. 
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Figure 1.  Pipeline ADC architecture 
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where Vink and Voutk are the input and output voltages of 
stage k, respectively; dk is the 1-bit digital output of stage k; 
and Vref is the reference voltage.  

Due to issues such as capacitor mismatch, charge 
injection, comparator offset and finite op amp gain, the 
output voltage of one stage may exceed the input range of 
the next stage, which will cause missing decision levels. This 
over-range problem can be avoided by intentionally setting 
the nominal gain of each stage to be less than 2 (radix<2). 
The modified ideal transfer curve of one stage is shown in 
Fig. 2(a). With an appropriate gain reduction, the output 
voltage of one stage can be ensured to be within the input 
range of the next stage in existence of errors such as 
capacitor mismatch and comparator offset. Since the gain is 
less than two, a pipeline consists of n stages will not give 2n 
digital output codes for n bit resolution. Some more pipeline 
stages are usually added to provide enough redundancy in 
decision levels. The less-than-two gain also introduces 
missing codes in the output, causing the output codes to be 
discontinuous. The discontinuity in the digital output causes 
unreasonably large INL and DNL and thus must be removed. 

Suppose a pipeline stage, say, stage k, has 

1) Two gains g1k and g2k. g1k’s nominal value is less than 2, 
say g10=1.93, for over-range protection, and g20=g10/2; 

2) A comparator offset Vosk with nominal value 0; 

3) Two reference voltage Vr1k and Vr2k, whose nominal 
values are –Vref and +Vref, respectively. 

The actual transfer curve of stage k can be expressed as 
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Solving Vink from (3) and (4) gives 
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Figure 2.  Ideal and actual transfer curve of a radix<2 pipeline stage 
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For the 1st stage, we get 
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Since the 1st stage’s output is also the 2nd stage’s input, 
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Substituting (7) to (6) and doing this iteratively for all the n 
stages give 
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The last term on the right hand side of (8) is the residue 
of the last stage, which is very small and can be neglected. 
The second term is a constant offset. The first term is the 
most important one, which shows that Vin can be accurately 

interpreted from the digital output if ( )2
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known for all stages. 

III. DIGITAL CALIBRATION ALGORITHM 
Neglecting the last term in (8) and multiplying the two 

sides by 
n

1 ref
=1

g / 2Vi
i
∏  gives 

 
n

in
=1

V̂ di i
i

w C+∑  (9) 

where 
n

r2 r1
2 1

= +1 ref

V -V
g g

2V
i i

i i j
j i

w = ∏  (10) 

and 
nn

r1
2 1

1 = +1 ref

V
g g

2V
i

i j
i j i

C
=

 
=   

 
∑ ∏  (11) 



Since inV̂  is a scaled version of Vin, it should have the same 
linearity performance as Vin. If we interpret the digital output 
using powers of 2, essentially we are assuming g1i=2 and 
g2i=1, and Vr2i-Vr1i=2Vref for all i’s, then (9) becomes 
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Comparing (9)~(11) with (12), we can see that for radix<2 
configuration, since the gain is intentionally set to be less 
than 2, the actual value of wi is less than 2n-i, which causes 
the discontinuity in the output codes. 

 To correct the discontinuity in the output, a good 
estimation of wi is needed. Direct measurement of 
parameters such as gi, Vr1i and Vr2i is infeasible. Fortunately, 
there exist digital calibration algorithms that can effectively 
calculate wi without knowing the exact value of these 
parameters. The algorithm proposed in [4] tried to measure 
the jump in the transfer curve (S1-S2 in Fig. 2(b)) of each 
stage, which is essentially wi. However, there are two 
potential problems associated with the algorithm. First, the 
algorithm actually doesn’t measure S1-S2, it measures S1’-
S2’ instead. Because of the nonlinearity of the op amp, S1-
S2 and S1’-S2’ may not be the same and this will become 
more problematic when the ADC’s resolution increases. 
Second, the pipeline is interrupted and externally controlled 
when doing calibration, which means the pipeline in 
calibration mode may not be the same as that in conversion 
mode. Thus the correction code may not be perfect for the 
pipeline working in conversion mode. 

Looking at the discontinuity problem from another 
viewpoint may give us more insight about the relationship 
between the output codes and ADC characteristics. Notice 
that the discontinuities in the output codes show up as gaps 
composed of empty bins in the output histogram. The gap’s 
width is the difference between ADC’s two outputs for two 
adjacent inputs. Ideally, there should be no gaps since input 
with enough density should result in consecutive output 
codes. The ideal correction code for an output code should 
be the summation of the widths of all those gaps that happen 
before the output code. Furthermore, to get a better linearity 
performance after calibration, if the total count of the two 
codes on the two sides of a gap is too small, these two codes 
should be merged together and considered as one code after 
calibration. However, storing a correction code for each 
output code is too memory consuming. When the nominal 
gain is set to be less than two, (9)~(12) show that the 
difference between inV̂′  and inV̂  is caused by the difference 
between wi and 2n-i in each stage i whose digital output di=1, 
excluding a constant offset. Thus, the ideal correction code, 
which is a quantization of in in

ˆ ˆV -V′ is a linear combination of 
all those stages’ contribution plus a constant offset. That is to 
say, if we can find a group of correction codes corresponding 
to the wi-2n-i of each stage (each bit), defined as 

 ( )1 2 n
T

b b b bc c c=c  (13) 

then the correction codes ci for a specific output code Di can 
be easily generated by adding up the bit correction codes 
corresponding to those stages whose digital output is 1, plus 
the offset. That is 

 i i b osc c= × +D c  (14) 

where ( )1 2 nd d di i i i=D  (15) 

Given the output histogram, for any output code Di with 
count >0, ci can be calculated by summing gaps’ widths up 
(including an unknown offset). Then ideally 
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N is the total number of output codes whose count is greater 
than 0. One column is added in D and one element is added 
in cbit for correcting the offset. ˆbitc  should be chosen as 
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where D+ is the pseudo inverse of matrix D. Given the output 
histogram, D and C can be easily obtained and applying (21) 
will directly give ˆbitc , which is the correction code for each 
stage and the offset. After ˆbitc  is obtained, for any digital 
output Di, the corresponding correction code îc can be 
calculated as 

 ( ) ˆˆ 1i i bitc = ×D c  (22) 

IV. IMPLEMENTATION AND PERFORMANCE ISSUES 
Equation (22) shows that instead of storing a correction 

code for each output code, we only need to store a small 
group of correction codes corresponding to each pipeline 
stage and an offset. The correction code for a particular 
output code can be easily calculated from ˆbitc . As a result, 
when implementing the digital correction on-chip, the 
memory requirement is dramatically reduced (from the order 
of 2n to that of n, where n is the number of stages). And only 



an adder is needed for calculating the correction code of a 
digital output. 

Since ˆbitc is calculated based on D and C, which are 
obtained from the output histogram, no external control of 
each pipeline stage is needed. The pipeline is exactly the 
same in the calibration mode as in the conversion mode. And 
since the algorithm uses the digital output, which changes 
when the input pass the trip point of the comparator, the 
algorithm should give a better estimation of the voltage jump 
in the transfer curve than the algorithm proposed in [4]. 

V. SIMULATION RESULTS 
The algorithm is applied to a 15-bit pipelined ADC in 

MATLAB simulation. The pipeline is composed of 17 
stages, and each stage gives a 1-bit output. The nominal 
gains of the first 11 stages are set to be 1.93 and the rest 6 
stages have nominal gains set to 2. The last bit is truncated 
after calibration to give a 15-bit digital output.  

Fig. 3 shows the ADC’s nonlinearity before calibration. 
Fig. 4 and Fig. 5 show the calibrated ADC’s nonlinearity 
after applying the algorithm proposed in this paper and in 
[4], respectively. The un-calibrated ADC has peak INL about 
1000 LSB and 1 LSB DNL. As shown in Fig. 4, the 
proposed algorithm reduces the INL to be less than 1 LSB 
and DNL to be about 0.3 LSB after calibration, which is 
comparable to the result of applying the algorithm proposed 
in [4], which is about 1 LSB INL and 0.5 LSB DNL as 
shown in Fig. 5. 

VI. CONCLUSION 
This paper presents an algorithm for the digital 

calibration of pipelined ADC’s. The algorithm calculates the 
correction codes using the histogram result of a code density 
test. No disturbance of the pipeline or precision ramp input is 
needed for the calibration. The algorithm can significantly 
improve the linearity of a pipeline ADC by removing the 
discontinuities in the output. The digital calibration can be 
easily implemented on-chip with very small hardware 
overhead. The algorithm can be applied to pipeline or cyclic 
ADC architectures with 1-bit/stage or multi-bit/stage sub-
radix configuration. 
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Figure 3.  ADC’s linearity before calibration 

 

Figure 4.  ADC’s linearity after calibrated using the proposed algorithm 

 

Figure 5.  ADC’s linearity after calibrated using the algorithm in [4] 


