
A Cost-Effective Histogram Test-Based Algorithm for
Digital Calibration of High-Precision Pipelined ADCs

Xin Dai, Degang Chen, and Randall Geiger
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011, USA

Abstract—This work presents a self-calibration algorithm that
corrects the linearity errors of pipelined ADCs with a sub-
radix architecture, based on the results of simple code density
tests. The proposed algorithm identifies discontinuities in an
ADC’s output histogram data, calculates correction codes for
transitions in pipeline stages, and digitally calibrates ADC’s
output codes. Simulation results show that the calibration
algorithm can dramatically improve the linearity performance
of ADCs. The INL can be reduced from about 1000 LSB to less
than 1 LSB. Since this algorithm is based on conventional code
density tests and uses only a few memory cells and simple logic
circuits to carry out the calibration, this algorithm can be
easily implemented on chip without introducing much area
and cost overhead and serving as a self-calibration solution for
high-speed high-precision pipelined ADCs.

I. INTRODUCTION
The pipeline architecture is widely used in high speed,

high resolution analog-to-digital converter (ADC) design.
Particularly, the 1b/stage and 1.5b/stage configurations with
over range protection are often used, because each stage has
a very simple structure and the requirement on the op amp
performance is relatively easy to achieve. However, issues
like capacitor mismatch, comparator offset, charge injection,
and finite gain and nonlinearity of op amps all limit the
accuracy of ADC stages. Handling these issues directly is not
favorable or even not doable. For example, the capacitor
mismatch or comparator offset can only be reduced at the
cost of large area consumption, while it is impossible to
achieve infinite and completely linear op amp gain.

Over the years, great efforts have been made to improve
the performance of pipelined ADCs. Error averaging [1] and
analog calibration [2] techniques were proposed, but these
techniques require elaborate calibration schemes and
complex additional circuits which greatly increase the
difficulty of circuit design. As compared to analog
calibration, digital calibration is more favored because of its
simpler calibration scheme, lower complexity, and smaller
area consumption. Soenen and Geiger proposed an algorithm
and architecture for digitally calibrating pipelined ADCs [3].

The circuit and the calibration scheme were so designed that
the same hardware used in the calibration mode was used in
the conversion mode. Karanicolas, Lee, and Bacrania also
gave a simpler ADC architecture with an applicable digital
self-calibration scheme [4]. All the previously reported
digital calibration schemes inevitably need modification of
the pipeline stages to allow external control during the
calibration phase. This is not amenable, because calibrations
which require disturbance of the pipeline may introduce
errors by themselves, especially when the ADC’s resolution
is high, and architecture specific calibrations are not
applicable to ADCs of different architectures.

This paper presents a new digital algorithm for
calibrating pipelined ADCs. The calibration algorithm is
based on results of input-output histogram tests so that it
does not disturb the data path of an ADC during test and not
require external control of pipeline stages. Correction codes
are calculated from the discontinuity in the histogram data
and the digital calibration can be done with a small number
of memories, an adder and some simple control logics.
Furthermore, this algorithm does not require a precision
ramp input for the histogram test. All these features make
this algorithm applicable for on-chip implementations.
Simulations show that the INL of an ADC can be reduced
from about 1000 LSB originally to less than 1 LSB after
calibration, which is comparable to what the algorithm
reported in [4] can achieve.

The rest of the paper is organized as follows. In section
II, the pipelined architecture is reviewed with mathematical
descriptions. Section III describes the principle of the digital
calibration algorithm. Section IV discusses implementation
issues and Section V gives the simulation results.

II. PIPELINE ARCHITECTURE AND MODELING
The pipeline architecture of 1-bit/stage is shown in Fig.

1. For each stage, the comparator compares the input voltage
with 0, and gives a 1-bit digital output. The output voltage of
the stage is determined by the input voltage and the
comparison result, which can be described as follows.

x 2

-Vref/2 Vref/2

D(0)

+ |

1 0

Vin x 2

-Vref/2 Vref/2

D(1)

+ |

1 0

Stage 1 Stage 2

Figure 1. Pipeline ADC architecture

For any pipeline stage k, k=1, 2, 3…

 in

in

0 V 0
d

1 V 0
k

k
k





<
=

>
 (1)

 ref
out in ref

VV 2 [V V d]
2k k k= × + − × (2)

where Vink and Voutk are the input and output voltages of
stage k, respectively; dk is the 1-bit digital output of stage k;
and Vref is the reference voltage.

Due to issues such as capacitor mismatch, charge
injection, comparator offset and finite op amp gain, the
output voltage of one stage may exceed the input range of
the next stage, which will cause missing decision levels. This
over-range problem can be avoided by intentionally setting
the nominal gain of each stage to be less than 2 (radix<2).
The modified ideal transfer curve of one stage is shown in
Fig. 2(a). With an appropriate gain reduction, the output
voltage of one stage can be ensured to be within the input
range of the next stage in existence of errors such as
capacitor mismatch and comparator offset. Since the gain is
less than two, a pipeline consists of n stages will not give 2n
digital output codes for n bit resolution. Some more pipeline
stages are usually added to provide enough redundancy in
decision levels. The less-than-two gain also introduces
missing codes in the output, causing the output codes to be
discontinuous. The discontinuity in the digital output causes
unreasonably large INL and DNL and thus must be removed.

Suppose a pipeline stage, say, stage k, has

1) Two gains g1k and g2k. g1k’s nominal value is less than 2,
say g10=1.93, for over-range protection, and g20=g10/2;

2) A comparator offset Vosk with nominal value 0;

3) Two reference voltage Vr1k and Vr2k, whose nominal
values are –Vref and +Vref, respectively.

The actual transfer curve of stage k can be expressed as

 1 in 2 r1
out

1 in 2 r2

g V g V d 0
V

g V g V d 1
k k k k k

k
k k k k k





⋅ − ⋅ =
=

⋅ − ⋅ =
 (3)

where in os

in os

0 V V
d 1 V >V

k k
k

k k





<
= (4)

Solving Vink from (3) and (4) gives

D=0 D=1

Vout

Vin
-Vref Vref

-Vref

Vref

D=0 D=1

Vout

Vin
-Vref Vref

-Vref

Vref
S1'

 S2 '

S1

S2

(a) (b)

Figure 2. Ideal and actual transfer curve of a radix<2 pipeline stage

 ()out 2 2
in r1 r2 r1

1 1 1

V g g
V = + V +d V -V

g g g
k k k

k k k k k
k k k

 (5)

For the 1st stage, we get

 ()out1 21 21
in r11 1 r21 r11

11 11 11

V g g
V = + V +d V -V

g g g
 (6)

Since the 1st stage’s output is also the 2nd stage’s input,

 ()out2 22 22
out1 in2 r12 2 r22 r12

12 12 12

V g g
V =V = + V +d V -V

g g g
 (7)

Substituting (7) to (6) and doing this iteratively for all the n
stages give

 ()
n n

2 2 outn
in r2 r1 r1 n

=1 1
1 1 1

=1 =1 =1

g g V
V = d V -V V

g g g

i i
i i i ii i

i i
j j i

j j i

=

+ +∑ ∑
∏ ∏ ∏

(8)

The last term on the right hand side of (8) is the residue
of the last stage, which is very small and can be neglected.
The second term is a constant offset. The first term is the
most important one, which shows that Vin can be accurately

interpreted from the digital output if ()2
r2 r1

1
=1

g
V -V

g

i
i ii

j
j
∏

 is

known for all stages.

III. DIGITAL CALIBRATION ALGORITHM
Neglecting the last term in (8) and multiplying the two

sides by
n

1 ref
=1

g / 2Vi
i
∏ gives

n

in
=1

V̂ di i
i

w C+∑ (9)

where
n

r2 r1
2 1

= +1 ref

V -V
g g

2V
i i

i i j
j i

w = ∏ (10)

and
nn

r1
2 1

1 = +1 ref

V
g g

2V
i

i j
i j i

C
=

 
=   

 
∑ ∏ (11)

Since inV̂ is a scaled version of Vin, it should have the same
linearity performance as Vin. If we interpret the digital output
using powers of 2, essentially we are assuming g1i=2 and
g2i=1, and Vr2i-Vr1i=2Vref for all i’s, then (9) becomes

n n

n n 1
in

=1 1
V̂ d 2 2i i

i
i i

− − −

=

′ = −∑ ∑ (12)

Comparing (9)~(11) with (12), we can see that for radix<2
configuration, since the gain is intentionally set to be less
than 2, the actual value of wi is less than 2n-i, which causes
the discontinuity in the output codes.

 To correct the discontinuity in the output, a good
estimation of wi is needed. Direct measurement of
parameters such as gi, Vr1i and Vr2i is infeasible. Fortunately,
there exist digital calibration algorithms that can effectively
calculate wi without knowing the exact value of these
parameters. The algorithm proposed in [4] tried to measure
the jump in the transfer curve (S1-S2 in Fig. 2(b)) of each
stage, which is essentially wi. However, there are two
potential problems associated with the algorithm. First, the
algorithm actually doesn’t measure S1-S2, it measures S1’-
S2’ instead. Because of the nonlinearity of the op amp, S1-
S2 and S1’-S2’ may not be the same and this will become
more problematic when the ADC’s resolution increases.
Second, the pipeline is interrupted and externally controlled
when doing calibration, which means the pipeline in
calibration mode may not be the same as that in conversion
mode. Thus the correction code may not be perfect for the
pipeline working in conversion mode.

Looking at the discontinuity problem from another
viewpoint may give us more insight about the relationship
between the output codes and ADC characteristics. Notice
that the discontinuities in the output codes show up as gaps
composed of empty bins in the output histogram. The gap’s
width is the difference between ADC’s two outputs for two
adjacent inputs. Ideally, there should be no gaps since input
with enough density should result in consecutive output
codes. The ideal correction code for an output code should
be the summation of the widths of all those gaps that happen
before the output code. Furthermore, to get a better linearity
performance after calibration, if the total count of the two
codes on the two sides of a gap is too small, these two codes
should be merged together and considered as one code after
calibration. However, storing a correction code for each
output code is too memory consuming. When the nominal
gain is set to be less than two, (9)~(12) show that the
difference between inV̂′ and inV̂ is caused by the difference
between wi and 2n-i in each stage i whose digital output di=1,
excluding a constant offset. Thus, the ideal correction code,
which is a quantization of in in

ˆ ˆV -V′ is a linear combination of
all those stages’ contribution plus a constant offset. That is to
say, if we can find a group of correction codes corresponding
to the wi-2n-i of each stage (each bit), defined as

 ()1 2 n
T

b b b bc c c=c (13)

then the correction codes ci for a specific output code Di can
be easily generated by adding up the bit correction codes
corresponding to those stages whose digital output is 1, plus
the offset. That is

 i i b osc c= × +D c (14)

where ()1 2 nd d di i i i=D (15)

Given the output histogram, for any output code Di with
count >0, ci can be calculated by summing gaps’ widths up
(including an unknown offset). Then ideally

 bit× =D c C (16)

where

1 11 21 n1

2 12 22 n2

N 1N 2N nN

1 d d d 1
1 d d d 1

1 d d d 1

   
   
   = =   
      
   

D
D

D

D

 (17)

 ()1 2 n
T

bit b b b osc c c c=c (18)

and ()1 2 N
Tc c c=C (19)

N is the total number of output codes whose count is greater
than 0. One column is added in D and one element is added
in cbit for correcting the offset. ˆbitc should be chosen as

 2ˆ arg minbit = − ×
c

c C D c (20)

Solving
2

0
∂ − ×

=
∂

C D c
c

 gives

 () 1
ˆ T T
bit

− += =c D D D C D C (21)

where D+ is the pseudo inverse of matrix D. Given the output
histogram, D and C can be easily obtained and applying (21)
will directly give ˆbitc , which is the correction code for each
stage and the offset. After ˆbitc is obtained, for any digital
output Di, the corresponding correction code îc can be
calculated as

 () ˆˆ 1i i bitc = ×D c (22)

IV. IMPLEMENTATION AND PERFORMANCE ISSUES
Equation (22) shows that instead of storing a correction

code for each output code, we only need to store a small
group of correction codes corresponding to each pipeline
stage and an offset. The correction code for a particular
output code can be easily calculated from ˆbitc . As a result,
when implementing the digital correction on-chip, the
memory requirement is dramatically reduced (from the order
of 2n to that of n, where n is the number of stages). And only

an adder is needed for calculating the correction code of a
digital output.

Since ˆbitc is calculated based on D and C, which are
obtained from the output histogram, no external control of
each pipeline stage is needed. The pipeline is exactly the
same in the calibration mode as in the conversion mode. And
since the algorithm uses the digital output, which changes
when the input pass the trip point of the comparator, the
algorithm should give a better estimation of the voltage jump
in the transfer curve than the algorithm proposed in [4].

V. SIMULATION RESULTS
The algorithm is applied to a 15-bit pipelined ADC in

MATLAB simulation. The pipeline is composed of 17
stages, and each stage gives a 1-bit output. The nominal
gains of the first 11 stages are set to be 1.93 and the rest 6
stages have nominal gains set to 2. The last bit is truncated
after calibration to give a 15-bit digital output.

Fig. 3 shows the ADC’s nonlinearity before calibration.
Fig. 4 and Fig. 5 show the calibrated ADC’s nonlinearity
after applying the algorithm proposed in this paper and in
[4], respectively. The un-calibrated ADC has peak INL about
1000 LSB and 1 LSB DNL. As shown in Fig. 4, the
proposed algorithm reduces the INL to be less than 1 LSB
and DNL to be about 0.3 LSB after calibration, which is
comparable to the result of applying the algorithm proposed
in [4], which is about 1 LSB INL and 0.5 LSB DNL as
shown in Fig. 5.

VI. CONCLUSION
This paper presents an algorithm for the digital

calibration of pipelined ADC’s. The algorithm calculates the
correction codes using the histogram result of a code density
test. No disturbance of the pipeline or precision ramp input is
needed for the calibration. The algorithm can significantly
improve the linearity of a pipeline ADC by removing the
discontinuities in the output. The digital calibration can be
easily implemented on-chip with very small hardware
overhead. The algorithm can be applied to pipeline or cyclic
ADC architectures with 1-bit/stage or multi-bit/stage sub-
radix configuration.

REFERENCES
[1] B.-S. Song, M. F. Tompset, and K.R. Lakshmikumar, “A 12-b

1Msample/s capacitor error-averaging pipelined A/D converter,”
IEEE J. Solid-State Circuits, vol. 23, no. 6, pp. 1324-1333, Dec.
1988.

[2] H. Ohara et al., “A CMOS programmable self-calibrating 13-b eight-
channel data acquisition peripheral,” IEEE J. Solid-State Circuits, vol.
SC-22, pp. 930-938, Dec. 1987.

[3] E. G. Soenen and R. L. Geiger, “An architecture and an algorithm for
fully digital correction of monolithic pipelined ADCs,” IEEE Trans.
Circuits Syst. II, vol. 42, pp. 143–153, Mar. 1995.

[4] A. N. Karanicolas, H.-S. Lee, and K. L. Bacrania, “A 15-b 1-
Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-
State Circuits, vol. 28, pp. 1207-1215, Dec. 1993

Figure 3. ADC’s linearity before calibration

Figure 4. ADC’s linearity after calibrated using the proposed algorithm

Figure 5. ADC’s linearity after calibrated using the algorithm in [4]

