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Yield Enhancement With Optimal Area Allocation
for Ratio-Critical Analog Circuits
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Abstract—Parametric yield models for widely used area al-
location schemes in ratio-critical analog circuits are developed.
It is shown that some of the most widely used schemes are sub-
optimal and that significant improvements in parametric yield
can be achieved with less intuitive area allocation approaches.
Simulations results are presented which show quantitatively what
improvements in yield can be achieved with improved area alloca-
tion strategies for resistive feedback amplifiers and R-2R ladders.

Index Terms—Area allocation, contact resistance, parametric
yield, resistor strings, R-2R ladders, yield.

I. INTRODUCTION

I T IS WELL known that different layouts of a given
matching-critical circuit can have significantly different

performance and yield and considerable effort is often focused
on developing good layout strategies. Much of this effort has
been focused on managing gradient effects, propagation delays,
ohmic voltage drop in interconnects, and parasitic capacitances.
Gradient-tolerant layouts including segmented common cen-
troid structures, path-length matching, orientation awareness,
the use of dummy devices on the periphery of matching critical
components, and careful sizing of interconnects have proven
useful for improving effective matching performance [1]–[3].
Local random variations in process parameters, however, are
often a significant contributor to performance degradation
and parametric yield loss and none of the layout strategies
mentioned provide any relief for the problems caused by the
local random variations. Unless some form of calibration is
incorporated, about the only effective method most designers
use for managing the adverse effects of local random pa-
rameter variations is to increase the area or physical size of
the matching-critical components. It is well known that the
standard deviation of many performance parameters of interest
often decreases proportionally to the reciprocal of the square
root of the area [1], [4]–[7]. Thus, a factor of 4 increase in
area is required for each factor of 2 reduction in the standard
deviation of the random component of the performance param-
eter. In addition to the adverse effect on device area, the larger
devices often introduce additional parasitic capacitances and
limit the speed of operation of the circuit, and in some cases
also increase the power dissipation.
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Invariably the area allocated to matching-critical passive and
active devices is dependent upon and often proportional to the
component value of the devices. For example, the area conven-
tionally allocated by designers to each of the “R” resistors in an
R-2R ladder is the same and the area allocated to each of the
“2R” resistors is also the same. Correspondingly, if the ratio of
two resistors is K, the area allocated to one of the two resis-
tors is conventionally K times of the area allocated to the other
resistor. This component-ratio based area allocation strategy is
natural and supports the concept of realizing a ratio-critical cir-
cuit with the appropriate interconnection of unit cells.

Considering the cost of the silicon area not only in terms of
the real estate but also the performance implications associated
with the area-dependent parasitic capacitances and power dis-
sipation, the question naturally arises: Is the component-ratio
based area allocation strategy optimal? Or, equivalently, can
parametric performance and yield be improved within a fixed
silicon area constraint with other area allocation strategies?

In this paper, we focus on the relationship between parametric
performance, parametric yield, and area allocation in matching-
critical circuits. In particular, the issues of area allocation in
feedback networks, R-2R ladders, and resistor string DACs are
addressed.

In what follows it will be assumed that the only nonideal
effects are the random variation in matching critical compo-
nents. That is, the effects of gradients, placement, and orien-
tation of matching-critical components will not be considered
but it will be assumed that known existing layout strategies in-
cluding segmentation, common-centroid layouts, and peripheral
dummy devices are used to manage such nonideal effects. The
beneficial properties, ensuring from good layout strategies that
provide insensitivity to local nonrandom variations are, in gen-
eral, not adversely affected by the optimal area allocation strate-
gies introduced in this paper.

As an example, for a negative feedback amplifier with a nom-
inal gain of 16, if an optimal area allocation strategy is used
instead of the widely used component-ratio area allocation ap-
proach, it will be shown that the parametric yield due to local
random variations in the sheet resistance can be increased from
78% to 99% with the same total area in a typical process.

With decreasing feature sizes in emerging processes, the
cross-sectional area of contacts is decreasing with feature size.
This is driving up the contact resistance and usually increasing
the variance of the contact resistance between two closely
placed contacts. The implication is that the effective resistance
of film resistors is becoming increasingly dependent upon
contact resistance and the variance of the effective resistance
is becoming increasingly dependent upon the variance of the
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Fig. 1. Homogeneous rectangular thin film resistor.

contact resistances. A statistical model for the effects of contact
resistance on the performance of matching-critical circuits
is also discussed and included in the formulation of the area
allocation problem in matching-critical circuits.

II. AREA-PARTITIONING

The effects of local random variations in the sheet resistance
on the resistance of a rectangular film resistor depicted in Fig. 1
will be considered in this section. In this simplified description,
the resistor body is a rectangular region of length and width

with contacts along the left and right sides of the resistor.
The film material that comprises the resistor body is assumed
to be homogeneous, that is, the nominal sheet resistance is in-
dependent of position in the resistor body. It will be assumed
initially that the contact resistance of the rectangular resistor is
0 . It will also be assumed that the local random variations in
the sheet resistance from one point to another distinct point are
uncorrelated, and that the length and width are equal to
their nominal values. Comments about the random variations in

or , which may play a role in matching properties when
or is small, will be made later. With these assumptions, it

follows that the nominal resistance of a rectangular resistor is
given by the expression

(1)

where is the nominal value of the sheet resistance. The
variance of the normalized resistance can be expressed as [1],
[5], [8], Appendix

(2)

where the random variable is the resistance, is a process
parameter that characterizes the random local sheet resistance
variation, and is the area of the resistor.

A. Feedback Amplifier

A basic negative feedback amplifier is shown in Fig. 2. The
gain, , of the amplifier is given by the well-known expression

[9] where the resistors and are random
variables that differ from their nominal values because of the
local random variations in the sheet resistance. The nominal
value of the gain is given by the expression
where and are the nominal values of the resistors

and , respectively. The random variables
and are assumed to be uncorrelated with zero mean

Fig. 2. The basic resistor feedback amplifier.

and have a nearly Gaussian distribution [10], [11]. If the random
component of or is appreciable relative to the nominal
component, a closed-form explicit expression of the probability
density function (PDF) of the gain is difficult or impossible to
obtain. In such situations, however, the gain accuracy would be
so poor that these amplifiers would be of little use in precision
applications. Correspondingly, in the practical applications of
interest in this work where accurate gain is required, the random
component of , denoted as , and the random component
of , denoted as , must be very small relative to the nom-
inal component if reasonable yields are to be obtained. In these
situations, it can be shown that the normalized gain can be ap-
proximated by the expression

(3)

where is the nominal gain, i.e., .
Since and are independent Gaussian random vari-

ables and since it is well known that the linear combination of
Gaussian random variables is Gaussian, it follows that the nor-
malized gain is also Gaussian with variances given by

(4)

It follows from (2) and (4) that the variance of the normalized
gain can be rewritten as

(5)

where and are the areas of and , respectively.
Two natural methods for area allocation for the resistors are

what we term the “conventional series” allocation and the “con-
ventional parallel” allocation. If is an integer, the conven-
tional series allocation is characterized by the formation of
with the series connection of unit cells while is com-
prised of a single unit cell. This is depicted in Fig. 3(a). The
unit cell itself may be physically a series or parallel combina-
tion of smaller unit cells if a common centroid layout is used
to minimize gradient effects. Correspondingly, the conventional
parallel allocation is characterized by the formation of with
the parallel connection of unit cells while is comprised
of a single unit cell. This is depicted in Fig. 3(b).

If is the area of the unit cell, it follows from (5) that
the variance of for both of the conventional area allocation
strategies is given by

(6)
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Fig. 3. Conventional (a) series and (b) parallel area allocation strategies for
amplifier.

or, if is the total area allocated to the resistors, it can be
expressed in terms of as

(7)

It follows from (7) that the standard deviation of the gain can
be expressed as

(8)

It should be apparent from (8) that for a fixed total area, the
standard deviation increases rather rapidly with and that for
large gains, it increases with .

Both the conventional series and conventional parallel area
allocation strategies can be viewed as component-ratio based
area allocation schemes since the area allocated to the resistors
is proportional to the values of the resistors.

The issue of optimal area allocation for a fixed total resistor
area will now be addressed. It follows from (5) that the variance
can be expressed in terms of as

(9)

If this expression is minimized for a fixed with respect
to , it follows from a simple derivation that the variance is
minimized if

(10)

and is given by

(11)

It follows from (11) that the standard deviation of the gain for
the optimal area allocation can be expressed as

(12)

These results can be summarized with the layout principle for
ratio-matched resistors.

Layout Principle for Ratio-Matched Resistors: The effects of
local random variations in sheet resistance in the ratio matching

accuracy of two rectangular resistors will be minimized for a
given total resistor area if equal area is allocated to the two
resistors.

A comparison of (7) with (11) shows a rather substantial dif-
ference. Specifically, the conventional series and conventional
parallel allocation strategies have a standard deviation depen-
dent upon whereas the optimal area allocation strategy has
a standard deviation dependent upon . This difference can be
quite significant for large gains.

As an example, if an amplifier with a gain of 16 is imple-
mented with the conventional series area allocation, the stan-
dard deviation will increase by a factor of 2.125 over that for
an optimal area allocation. This difference may be better ap-
preciated from a parametric yield comparison. If the gain of
16 must be accurate to 1% and the total resistor area is allo-
cated to achieve a 99.999% parametric yield with an optimal
area allocation scheme, then the parametric yield would drop to
96.75% for either the conventional series or the conventional
parallel area allocation strategy. Although it may appear that
this is only a drop of 3.25% in yield, the economical impact
of this yield drop is very significant. For example, if a circuit
required 32 channels with a gain of 16 all with an accuracy
requirement of 1%, then the optimal area allocation strategy,
assuming a Gaussian distribution, would provide a parametric
yield of whereas that of the conventional
series layout would be .

In some cases it may not be convenient to exactly allocate the
same area to and . Such might be the case, for example,
if the desired gain is 3. In these cases, it is useful to quantify
the parametric yield loss or correspondingly the deterioration in
the standard deviation of the gain from the optimal value. If we
define the area split factor by the expression ,
it follows from (9) and (11) that

(13)

where it is apparent that the standard deviation achieved its min-
imum value when .

A plot of the normalized standard deviation of the gain versus
is shown in Fig. 4. From this plot it is apparent that the min-

imum at is shallow but that the standard deviation
penalty goes to infinity if the area differences are large. For ex-
ample, if we want the standard deviation to be at most 0.5%
above the optimal value, then whereas
if a 1% deviation is acceptable, then . A
near-minimum standard deviation and correspondingly near-op-
timal yield will be achieved only if the standard deviation of
the ratio is within the insensitive shallow region of the curve in
Fig. 4.

An example of where it is not practical to achieve an equal
split in the area but where near-optimal yield is still achiev-
able is worth mention. If the desired gain is 8, then can be
implemented with eight unit resistors in series and can be
implemented with nine unit resistors in a 3 by 3 series-parallel
combination. This results in a value of 8/17 which is in the
insensitive shallow region near the optimal value of .

An appreciation for the significance of the improvement of
the optimal area allocation strategy relative to that of the con-
ventional series layout or the conventional parallel layout can be
obtained from Fig. 4. It should be apparent that for small gains,



LIN et al.: RATIO-CRITICAL ANALOG CIRCUITS 537

Fig. 4. Effects of area partitioning on the normalized standard deviation.

the benefits for going from the conventional series or the con-
ventional area allocation strategy to the optimal area allocation
strategy are minimal. However, the benefits are very significant
when large gains, e.g. 100 with the series or parallel layout des-
ignated with points and in Fig. 4, are required.

When large gains are required it is apparent from (11) that
even with the optimal area allocation strategy, the standard de-
viation increases with the gain. There is also concern about the
large component spread required to achieve large gains. There
are two common strategies used for reducing the component
spread. One uses the cascade of lower gain stages and the other
is based upon using a T-feedback network. These are depicted in
Fig. 5(a) and (b), respectively. The issue of what impact these al-
ternate architectures have on gain accuracy with the presence of
random variations in sheet resistance will now be investigated.

For the cascaded amplifier of Fig. 5(a), it can be shown fol-
lowing a technique similar to that used for the basic amplifier of
Fig. 2 that the standard deviation of the gain will be minimized
if

(14)

and is given by

(15)

A comparison of (11) and (15) shows that the standard de-
viation doubles when the same gain is realized with a cascade
of two amplifier stages. This can cause a significant penalty in
yield if the cascaded amplifiers are used instead of using a single
stage amplifier. For a cascade of amplifiers, it can be shown
that the standard deviation will be minimized if all resistors have
the same area which is and the corresponding minimum
variance is given by

(16)

It should be apparent that the penalty in the yield for a given
area becomes significant if a large number of cascaded gain
stages are used.

Fig. 5. (a) Cascade amplifier. (b) T-feedback network amplifier.

The analysis of the amplifier with the T-feedback network is
somewhat more tedious. It is straightforward to show that the
magnitude of the nominal gain of the amplifier of Fig. 5(b) is
given by the expression

(17)

and the variance of the gain is given by

(18)

where the subscript denotes the random part of the variable
and the subscript denotes the nominal part of the variable.
The intermediate variables , , and are defined by

(19)

(20)

(21)

(22)

If , , and are the areas of , re-
spectively, it follows after substituting (2) into (18) that

(23)

If is the total area, we can express the constraint equation
as

(24)

Minimizing the variance in (23) with the constraint of (24),
we obtain the optimal area allocations

(25)
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Fig. 6. n-stage R-2R resistance ladder.

Substituting (25) into (23) and combining with (17)–(22),
is given by

(26)

Compared to (11), for T-feedback network is al-
ways larger than that of basic structure, because here the first
term in the bracket is always larger than one.

Although the closed form solution appears to be quite simple,
when expressed in terms of the component values in the cir-
cuit, it becomes quite unwieldy. A numerical comparison of the
T-feedback network amplifier with the basic single-stage am-
plifier and the cascaded structures, all under the assumption of
optimal area allocation with the same total resistor area, will
now be made. If the magnitude of the overall gain is to be
100, the standard deviation for the basic amplifier is given by

, that of a two amplifier cascade is given by
400 , that of a three amplifier cascade is given
by and that of the T-network with

and is given by .
The deterioration in the standard deviation from that attainable
with the basic single-stage amplifier should be apparent.

B. R-2R DAC

The basic R-2R ladder network depicted in Fig. 6, with ap-
propriate termination resistors on the two-port, is widely used in
R-2R DACs and other integrated applications because of what
most view as two attractive properties. One is the linear increase
in area with resolution. The other is the ability to implement
the ladder with multiple instantiations of a single unit cell with
each additional bit of resolution requiring only 3 additional unit
cells. Inherent in the rationale behind this view is the unques-
tioned premise that the area allocated for each R-2R segment is
the same irrespective of the number of bits of resolution of the
structure. Consistent with this view are two standard area allo-
cation schemes for implementing the R-2R ladder. One uses two
unit cells connected in series to realize each of the “2R” resis-
tors and a single unit cell to realize each of the “R” resistors as
depicted in the bit-cell of Fig. 7(a). This is descriptively termed
the “conventional series” area allocation strategy. The second
area allocation scheme uses two unit cells connected in parallel
to form each of the “R” resistors and a single unit cell to realize
the “2R” resistors as depicted in Fig. 7(b). This is descriptively
termed the “conventional parallel” area allocation strategy.

There are several variant applications of the R-2R network.
The question of whether the conventional series or the conven-
tional parallel area allocation offers better performance natu-
rally arises but once this question is raised, the more general

Fig. 7. Conventional (a) series (b) parallel area allocation strategies for R-2R
ladder.

question of whether either of these is optimal deserves consider-
ation. In has been previously shown [12], [13] that the conven-
tional series and the conventional parallel area allocations are
not optimal in one application. It will also be shown here that
the optimal area allocation strategy is application dependent.

An application of the R-2R network in an -bit DAC that was
an stage R-2R structure is shown in Fig. 8. This structure
has resistors grouped as bit slices denoted as
slice(2), , slice(n) in the figure. There is one termination re-
sistor, denoted as , has been included in the th bit slice.
The DAC ideally has output levels. Since emphasis is
on the performance of the R-2R network, it will be assumed that
the current sources are all matched and that the op amp is ideal.
The linearity of a DAC is one of the most important characteris-
tics of the DAC in many applications. Various metrics are used
to characterize the linearity of a DAC. One of the most widely
used metrics is the integral nonlinearity (INL), defined relative
to a fit line between the end points of the transfer characteris-
tics [14]. The INL is generally expressed relative to the ideal
change in the output due to a least significant bit (LSB) change
in the Boolean input [14]. This output change is denoted as an
LSB change in the output. The endpoint INL in LSB for output

, , is given by

INL (27)

where is the current corresponding to the Boolean input
with decimal equivalent . The INL is defined to be the max-
imum of the absolute values of the INL and is formally ex-
pressed as

INL INL (28)

The standard deviation of the INL is denoted by . The
INL is a random variable and is the th order statistic of the

correlated random variables, . An-
alytical expressions for statistics of the INL such as are
not mathematically tractable. This information is, however, es-
sential for soft yield prediction and for determining the optimal



LIN et al.: RATIO-CRITICAL ANALOG CIRCUITS 539

Fig. 8. Equal-current R-2R DAC.

area allocation strategy in the R-2R network. Computer simu-
lations can be used for characterizing the INL. For this char-
acterization it will be assumed that the total area , for an

-bit R-2R ladder is fixed. The optimal area allocation problem
for the stage R-2R ladder of Fig. 8 is, thus, that of
determining the area that should be allocated to each of the

resistors in the R-2R ladder so that the standard devi-
ation of the INL, , is minimized. Formally, if the variables

denoted the areas of the resistors,
then the optimal area allocation problem becomes that of deter-
mining that will minimize subject to the
constraint . This parameter optimiza-
tion problem with one constraint is not readily solvable even
with a simulator when is large because of the large number of
calculations needed to determine the INL. A near-optimal so-
lution can be obtained, however, by making three simplifying
assumptions that will dramatically reduce the dimensions of the
optimization space. These assumptions are the following.

1) The ratio of the area allocated to bit slice , denoted as
, to that allocated to bit slice , denoted as

is constant for all . This ratio can be
characterized by the parameter , thus

(29)

2) The ratio of the area allocated to the “2R” resistor, ,
in bit slice j, denoted as , to that of the “R” resistor,
in the same bit slice, denoted as , is constant for bit
slice(2) to . This ratio can be characterized by the
parameter , thus

(30)

3) The ratio of the area allocated to the two “2R” resistors,
and , denoted as and , to that

of the “R” resistors, denoted as in the th bit slice is
, thus

(31)

With these assumptions, the two parameters and
uniquely determines the area allocation and reduces the size of
the optimization space from variables to 2 variables.
This two-variable optimization is, thus, that of obtaining values
of and that minimize .

Fig. 9. Sensitivity of standard deviation to m and k of an 8-bit equal-current
R-2R DAC. (a) Coarse view. (b) Expanded view.

For convenience, a C-program was developed to perform this
optimization using a standard statistical simulation approach.
In this simulation, it was assumed that every resistor can be ex-
pressed as where is the nominal value and

is a random component of the resistor. It was assumed that
is a Gaussian variable with mean of zero and standard de-

viation of where the is the area as-
signed to this resistor as determined by the and values and

. It can be shown that the optimal values for and are not
dependent on , , or . Thus, for convenience in the
optimization, a total area was selected so that a resistor with
area will have a standard deviation of 0.1%. For each esti-
mate of in the simulation, 10 000 DACs were generated
by randomly selecting resistor values from the Gaussian distri-
bution just described. For each of the 10 000 DACs, the INL was
determined. The mean and standard deviation of the INLs were
computed. With this two-variable optimization, optimal values
of and were determined to be and . Since

is somewhat less than unity, this would suggest that the con-
ventional parallel layout should give better performance than
the conventional series layout. A plot of the standard deviation
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Fig. 10. Mean and sigma of INL of: (a) 6-bit; (b) 10-bit; (c) 12-bit; (d) 16-bit equal-current R-2R DAC.

in the INL versus for fixed and versus for fixed which
shows the sensitivity of the standard deviation to each of these
parameters is shown in Fig. 9. The plot in Fig. 9(b) is an ex-
panded version of that of Fig. 9(a). This plot shows that the local
minimum is quite shallow in either the or variable, sug-
gesting that near optimum performance can be obtained even if

and differ somewhat from their optimal values but the yield
penalty will be quite large if deviates significantly from the
optimum.

It is useful to make a comparison of the optimal area allo-
cation approach with the conventional series and the conven-
tional parallel area allocation strategies discussed earlier. It can
be shown that the conventional series strategy is characterized
by and and the conventional parallel strategy
is characterized by and . Fig. 10 shows com-
parisons of the standard deviation of the INL, , and the
mean of the INL, , of the optimal area allocation strategy
with those of the conventional series and the conventional par-
allel strategies. For convenience, we have assumed a process
with m. In this figure, and are
plotted versus area for different resolution levels. Each point of
the curve was obtained from a sample of 10 000 INLs generated
by the same method used in the optimization. It can be observed
that the conventional parallel layout has a lower standard devia-
tion than the conventional series layout but both are appreciably

larger than that of the optimal area allocation strategy. The im-
plications on yield of these differences in standard deviation will
be discussed in the next section.

The issue of optimality of the two-variable optimization in-
stead of a -variable optimization deserves comments.
In related work [12], [13], a more general three-variable op-
timization of a closely related optimization problem showed
little difference between the two-variable and the three-variable
optimization. All that we can claim here, however, is that this
two-variable optimization results in an area allocation that pro-
vides a significant improvement in performance for a given area
when compared to a standard area allocation strategy. We do
believe however, that two-variable optimization does provide
near-optimal values for and .

An alternative application of the R-2R ladder in a DAC is
shown in Fig. 11. The optimal area allocation and the perfor-
mance of the optimal structure relative to that of the conven-
tional series and the conventional parallel strategies were con-
sidered in [13]. For comparison with the R-2R application of
Fig. 8, the previous results will be repeated here. The parame-
ters and as defined by (29) and (30) can be used to charac-
terize the R-2R DAC in this application as well. Optimal values
of and were obtained. Although the value
of is comparable to that for the DAC of Fig. 8, the value of

differs significantly suggesting that more area should be al-
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Fig. 11. Binary-weighted-current R-2R DAC.

located to the 2R resistors than to the R resistors in contrast to
the results obtained for the circuit of Fig. 8. Since is some-
what larger than unity, these results also suggest that the con-
ventional series layout should give better performance than the
conventional parallel layout for the DAC application of Fig. 11,
in contrast to what was observed for the application of Fig. 8. A
plot of the standard deviation of INL versus for fixed and
versus for fixed which shows the sensitivity of the stan-
dard deviation to each of these parameters is shown in Fig. 12.
This plot shows that the local minimum is quite shallow in ei-
ther of the or variable, suggesting that near optimum per-
formance can be obtained even if and differ somewhat from
their optimal values but the yield penalty will be quite large if
deviates significantly from the optimum. It should be noted by
comparing the results in Fig. 9 with those in Fig. 12 that there is
a significant difference in the functional form of the INL for the
two DAC applications. A yield comparison of the optimal area
allocation scheme for the circuit of Fig. 11 with that of the con-
ventional series and the conventional parallel layout is shown in
Fig. 13. In this plot the total area for the three allocation schemes
is the same and the standard deviation is normalized relative to
that of the conventional parallel layout. As conjectured, in con-
trast to the DAC application of Fig. 8, these results show that
the conventional series scheme gives better performance than
the conventional parallel scheme. But as for the previous struc-
ture, the optimal layout gives considerably better performance
than either of the conventional schemes.

These results show that the optimal area allocation strategy
for the R-2R network is application dependent. Some applica-
tions favor allocating more area to the “R” resistors whereas
other favors allocating more area to the “2R” resistors. Both ap-
plications, however, show that with a fixed area constraint, it is
advantageous to allocate proportionally more area to the most
significant bit (MSB) portion of the network than toward the
LSB portion. Although the geometric decrease in the scaling of
area from the MSB to the LSB gives optimal performance, there
are challenges associated with continued scaling of area if the
number of bits of resolution is large. It was shown in [13] that the
major benefit in performance for the DAC of Fig. 11 is obtained
from scaling of the few MSB slices and that near-optimal per-
formance can be obtained if the latter LSB slices are all equally
sized and that near-optimal performance can be obtained using a
small number of standard unit resistors for arbitrary gain values.
The same results apply to the DAC of Fig. 8.

These results can be summarized with the layout principle for
the R-2R DACs considered in this section.

Fig. 12. Sensitivity of standard deviation to m and k of an 8-bit
binary-weighted current R-2R DAC. (a) Coarse view. (b) Expanded view.

Layout Principle for R-2R DACs: The effects of local random
variations in sheet resistance in the INL for R-2R DACs com-
prised of rectangular resistors will be minimized for a given total
resistor area if proportionally more area is allocated to the more
significant bits. But the optimal area allocation is dependent upon
how the R-2R network is used. The optimal area allocation for the
R-2R DAC of Fig. 8 corresponds to rationing the area between
successive bits by 1.6 and maintaining a ratio of the area of the
“2R” resistors to the “R” resistors of 0.7. The optimal area allo-
cation for the R-2R DAC of Fig. 11 corresponds to rationing the
area between successive bits by 1.7 and maintaining a ratio of the
area of the “2R” resistors to the “R” resistors of 2.2.

C. Resistor-String DAC

The resistor-string is also widely used in DACs and these
DACs are descriptively termed “R-String DACs” or simply
“String DACs.” The standard approach of implementing a



542 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 3, MARCH 2006

Fig. 13. Mean and sigma of INL of: (a) 6-bit; (b) 10-bit; (c) 12-bit; (d) 16-bit binary-weighted-current R-2R DAC.

resistor string is to allocate equal area to each of the resistors
in the R-string. As was the case for the finite gain amplifiers
and the R-2R DACs, the question of whether the equal area
allocation strategy in string DACs is optimal naturally arises.

The R-string DAC is shown in Fig. 14 where the resistors all
have the same nominal value. The DAC has output levels and
the endpoint INL at the th output, in LSB, is given by

INL (32)

It will be assumed that the value of each resistor can be ex-
pressed as

(33)

where is the nominal value and is the random deviation
of resistance from its nominal value. With this notation, if it
is assumed that

(34)

(32) can be rewritten as

INL (35)

If each resistor has the same area and the random part of
the resistors are all uncorrelated and identically distributed with
standard deviation , it follows from (35) that the stan-
dard deviation of INL can be expressed as

INL (36)

It follows from (2) and (36) that

INL (37)

It is apparent from (37) that INL will have a maximum
value around . Since is not an integer,
the maximum value occurs at or and
is given by

INL

(38)
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Fig. 14. Symbolic structure of resistor-string DAC.

A plot of INL normalized with respect to the process pa-
rameters and area (for ) appears in Fig. 15. INL is
symmetrical about the midpoint and the peak value increases
with increasing resolution.

The plot of Fig. 15 suggests that the INL is strongly depen-
dent upon the maximum of the INL , and that it may be possible
to reduce the standard deviation in maximum of the INL by in-
creasing the area allocated to mid-range resistors in the R-string
relative to that of those resistors near the ends of the string. This
intuition, however, may be misleading since the simple func-
tional form of (36) was obtained from the more complex sum-
mations in (35) under the assumption that the variances of the
individual resistors were the same. Of course, the issue of how
the INL relates to the INL is also of concern.

We will now address directly the issue of minimizing the
maximum of the INL , or, more specifically, the issue of min-
imizing the INL at the mid-range of the -string. It follows
from (35) that the midrange INL is given, for large , by

INL (39)

Under the assumption that the random part of the resistor
values are uncorrelated, the variance of INL can be ex-
pressed as

INL (40)

It follows from (2) that this can be expressed in terms of the
area allocated to the ith resistor in the string, , by

INL (41)

If it is assumed that the total resistor area is fixed at , we
obtain the constraint equation

(42)

Fig. 15. Plot of normalized standard deviation of INLk for N = 64.

The minimization of INL with respect to the constraint

of (42) results in the solution for all i. This indi-
cates the midrange INL will be minimized if the area allocated
to all resistors is the same. This suggests that the INL will be
minimized if equal area is allocated to each resistor as well. Ex-
tensive simulations were conducted in an attempt to verify that
the equal area allocation strategy also minimizes the INL. The
simulation time required for minimizing the INL with respect to
the area is very large even for modest values of so lower-di-
mensional parameterized optimizations were explored in which
proportionally more as well as proportionally less area was allo-
cated to resistors near the middle of the string. In all cases these
parameterized optimizations resulted in a larger INL than what
was obtained for equal area allocation. It is, thus, conjectured
that the INL is minimized when equal area is allocated to each
resistor in the R-string.

These results can be summarized with the layout principle for
R-strings.

Layout Principle for Resistor Strings: The effects of local
random variations in sheet resistance in the INL for Resistor
String DACs comprised of rectangular resistors will be mini-
mized for a given total resistor area if equal area is allocated to
each of the resistors.

III. CONTACT RESISTANCE ISSUE

The previous discussions were based upon the explicit
assumption that the dominant contributor to mismatch is the
random variations in the sheet resistance. In particular, the
effects of random variations in contact resistance and edge
variations of the resistor body were neglected. In this section,
the effects of random variations in contact resistance will be
considered and the effects of edge variations of the resistor
body will be discussed.

With the feature sizes of the process decreasing, the sizes of
the contacts are also decreasing and correspondingly the contact
resistance is increasing as is the variance of the contact resis-
tance. Unfortunately, the statistical variation of the contact re-
sistance from one contact to the next is quite large. The effects of
the random effects of the contact resistance and the combined
effects of the random effects of the contact resistance and the
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Fig. 16. Rectangular film resistor with contacts.

sheet resistance will be considered in this section. It will be as-
sumed that the contact resistance can be modeled as the sum
of a nominal component and a random component where the
nominal component is assumed to be the same for all contacts
in a matching critical region. It will be further assumed that the
random components are uncorrelated from one contact to the
next. This latter assumption, which is essentially equivalent to
neglecting gradient effects, will not significantly affect the re-
sults that will be developed in this section.

Fig. 16 shows a symbolic layout of a rectangular resistor. In
the figure, and are the width and length of the film resistor
and is the pitch of the contacts. If is large enough, the
number of contacts, , is approximately given by

(43)

A tedious but straightforward analysis (see the Appendix)
provides a good approximation of the variance of a reference re-
sistor which includes the effects of both the random variations
in the sheet resistance and the random variations in the contact
resistance

(44)

In this expression, is the nominal resistance value of
unit resistor cell, is the random component of the cell re-
sistance, is the nominal value of the resistance of a single
contact, is the random component of a single contact re-
sistance, is the nominal value of resistance of the sheet
resistor film, and is the random component of the sheet re-
sistance. The term is the variance of the local random
component of the contact resistance and is a constant character-
istic of the process.

The first term on the right-hand side (RHS) of (44) is the
contribution from the variance of the contact resistance and the
second term is the contribution from the variation of the sheet
resistance.

A standard cell is widely used in matching critical applica-
tions so that gradient effects can be cancelled by connecting
an appropriate number of these standard cells in an appropriate
series or parallel way to form a common-centroid layout. Al-
though this approach will increase the total area and increase
the effects of edge variations, it is usually justifiable because
of the importance of minimizing gradient effects. If the resistor

layout of Fig. 16 is used as a unit cell, this cell has an area .
If of these resistors are placed in parallel or if of these resis-
tors are placed in series and it is assumed that the local random
variations of both the sheet resistance and contact resistances
are uncorrelated, it can be shown that the normalized standard
deviation of the parallel or series combination is

(45)

where is the random part of the parallel or series combi-
nation, is the nominal resistance of the parallel or series
combination.

Equation (45) was developed under the assumption that the
local random variations of the sheet resistance and contact resis-
tance are uncorrelated, and in this case the relationship between

is given by (44). However, it can be shown that (45)
is applicable even if random edge variations are included or if
correlations exit between the sheet resistance and the contact
resistance, provided the random variations in the resistance of
the unit cells are uncorrelated. The area of the parallel or series
combination relates to the area of the unit cell by

(46)

Substituting (46) into (45), we obtain the expression

(47)

The first factor on the RHS of (47) is the reciprocal of the
square root of the area of the unit cell and the term in brackets
is a constant characteristic of the process. This same expres-
sion holds for a parallel series array of unit cells as well. All re-
sistances in this expression include the combined effects of the
sheet resistances and the contact resistances. A comparison of
(47) to (2) indicates they are of the same functional form. Specif-
ically the normalized standard deviation of an array of parallel
or series or parallel-series connected unit cells is equal to the
reciprocal of the square root of the total area multiplied by a
parameter that is characteristic of the process alone. All of the
derivations in the previous sections for the amplifiers, the R-2R
networks, and the R-string DACs were dependent only upon the
functional relationship of (2), specifically the fact that the nor-
malized standard deviation of a component is proportional to the
reciprocal of the square root of the area times a process depen-
dent constant. Thus, all of the results of the previous section are
directly applicable to unit cells that contain the local random
effects of both the contact resistance and the sheet resistance.
This relationship was developed under the assumption that the
resistor is rectangular with a nominally homogenous sheet re-
sistance and, thus, nominally uniform current density. Thus, the
layout principle for ratio-matched resistors can be restated to
include the effects of the random variations of the contact resis-
tance and the effects of edge variations as follows.

Layout Principle for Ratio-Matched Resistors (Including
Contact Resistance Effects): The combined effects of local
random variations in sheet resistance, contact resistance and
edge variations in the ratio matching accuracy of two resistors
will be minimized for a given total resistor area if an equal
number of unit cells, connected in a parallel, series, or par-
allel-series configuration, are allocated to the two resistors.
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Fig. 17. Examples of acceptable and unacceptable series, parallel, and
series/parallel implantation.

By a parallel, series, or parallel series configuration of cells
to form a resistor, we mean a connection where the nominal
current is the same in each unit cell of the resistor. Fig. 17 shows
acceptable and unacceptable parallel, series and parallel/series
connections.

Equation (47) does not provide an explicit relationship for
the variance in terms of process parameters. The effects of edge
variations on the unit cell will be negligible if and are large.
Drennan [15] suggests, at least in some processes, the effects
of width variations are negligible even if is small. A para-
metric expression for showing the effects of edged
variations on the unit cell, if of concern for a given process,
can be readily derived following the approach of Pelgrom [6]
or Drennan [15].

We will now concentrate on an explicit expression for the
variance of the unit cell in terms of the sheet resistance and
contact resistance process parameters. This can be obtained by
substituting (1), (2) and (43) into (44) to obtain

(48)

where and are dimensions of the unit cell as depicted in
Fig. 16. Finally, by substituting (47) into (48), we obtain an ex-
pression for the variance of a resistor of value R that is formed
by a series, parallel, or series-parallel connection of unit cells.

(49)

Note the term in parenthesis in (49) differs slightly from unity
since the effective length and the drawn length differ because of
the presence of the rows of contacts on each end of the resistor
as shown in Fig. 16.

It is not apparent from (48) whether the random variations in
the sheet resistance or the random variations in the contact resis-
tance are dominant. For small unit cells, the contact resistance
and the contact resistance variations will dominate whereas for

larger cells the sheet resistance and the sheet resistance varia-
tions will dominate. We will now determine the physical char-
acteristics of the cell that represents a transition from contact
resistance variance dominated to sheet resistance variance dom-
inated. To determine this, it can be observed from (48) that the
leftmost summand in the numerator is the contribution of the
contact resistance variation and the rightmost summand is the
contribution of the sheet resistance contribution. Crossover be-
tween contact resistance dominated and sheet resistance domi-
nated will occur when these two terms are equal. Equating these
terms we find that the width plays no role (provided is wide
enough that the assumption of (43) is valid) in the crossover and
obtain the critical length as

(50)

If we assume the pitch of the contact is , (50) can be
rewritten as

(51)

As can be seen from (51), the critical length is a process pa-
rameter. When the length of the resistor is larger than , the
variation of sheet resistance will dominate the contribution to
the variance and when smaller, the contact resistance variations
will dominate.

Good statistical information about a process is essential for
predicting parametric yield. Test structures that can be used to
measure parameters such as and are necessary for
process characterization. Since these parameters characterize
local process variations and not gradient effects or process vari-
ations from die to die, from wafer to wafer, or from process lot to
process lot, different test structures are needed to extract these
parameters. Some results [16] relating to extracting these pa-
rameters have been reported in the literature but it is the authors’
experience that this information is often missing from a descrip-
tion of the technology provided by many foundries. It is also the
authors’ experience that those responsible for extracting this in-
formation at several major semiconductor companies either do
not have test structures that are needed to extract this informa-
tion or do not distinguish between the effects of local and global
mismatch. The issue of propriety further limits the availability
of this information in the open literature. On smaller unit cells,
however, the contact resistance variations significantly domi-
nate those of the sheet resistance variations as governed by (51).

IV. YIELD ANALYSIS

Parametric yield predictions are strongly dependent upon the
statistical distributions of the random variables affecting yield.
In this work, the amplifiers discussed in Section II have a gain
that has a random component with a nearly Gaussian distribu-
tion. In contrast, the INL of the -bit R-2R DAC is an th order
statistics of non-Gaussian correlated random variables where

. In the former case, closed form expression relating
yield to the standard deviation of the Gaussian variables can
be readily derived. Closed form expression for the yield of the
R-2R DAC is not mathematically manageable. In this section we
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will derive expression for the yield of the amplifier structures.
Graphical results will be presented to compare yield potential
of the R-2R DACs.

A. Yield of Feedback Amplifier Structures

The statistical analysis in the preceding sections is used pri-
marily to predict yield of the feedback amplifier structures. In
this section, the benefits of optimal area allocation will be dis-
cussed. It is well known that if is a performance parameter
of interest and if defines the yield tolerance window on the
parameter about a specified value of , then the parametric
yield with respect to random variations in the parameter can
be expressed as

(52)

where f(x) is the probability density function (pdf) of x.
The local random variations of parameters such as the sheet

resistance and the contact resistance can be approximated with
a zero-mean Gaussian distribution provided that the total pa-
rameter variation is somewhat smaller than the nominal value
of the parameter. With this approximation, it is convenient to
express the yield, Y, in terms of the normalized random variable

where is the standard deviation as

(53)

where is the PDF of the zero-mean unit-variance normal
distribution generally designated with the distribution notation

. In terms of the normalized Gaussian cumulative prob-
ability density function (cdf) , it follows from (53) that

(54)

The yield of the ratio-based area allocation strategy for the
basic amplifier of Fig. 2 is compared with that of the optimal
area allocation strategy in Fig. 18 for different closed-loop
gains. In the yield comparison, it has been assumed that a good
amplifier must have a gain specification that is within 1% of the
target value. Since the conventional series and the conventional
parallel area allocations give the same yield, a distinction be-
tween these two strategies is not necessary. In this comparison,
the total area for the resistors was the same and the total area
was set at the level needed to obtain a 99% yield with the
optimal area allocation. Although one might argue that even for
the gain of 100, the yield drop is only a factor of approximately
2, the impact of this yield drop is most significant. For example,
if an integrated circuit had an array of 100 gain of 5 amplifiers
with total area allocated to obtain a yield of 99% for each of the
amplifiers with optimal area allocation, the amplifier parametric
yield would be whereas if the same
total area were allocated to the conventional ratio-based allo-
cation scheme, the yield would drop to .
The importance of doing a statistical analysis when making an
area allocation should be apparent from this simple example.

Fig. 18. Yield of feedback amplifier.

Of equally importance is the realization that significant yield
penalties or equivalently area increases will be incurred if
conventional area allocation strategies are used when the gain
of the amplifier is large.

A comparison of the ratio-based area allocation scheme for
the cascaded amplifiers and the T-feedback amplifier is made
with that of the optimal area allocation scheme in Fig. 19. In
these comparisons, the total area was the same for each archi-
tecture and the area was allocated to obtain a 99% yield with the
basic single-stage amplifier optimal area allocation. Fig. 19 also
shows a comparison of the yield for the conventional architec-
ture with that of the cascaded amplifiers and that of the T-feed-
back amplifier. A series layout with and was
assumed for the T-feedback amplifier. Included in this figure are
the yields that would be obtained if the conventional ratio-based
area allocations were used. The impact of both architecture and
area allocation on yield should be apparent from this figure.

B. Yield of R-2R DACs

The yield of the R-2R ladder DAC of Fig. 8 for the conven-
tional series and the conventional parallel area allocations are
compared with that of the optimal area allocation of
and in Fig. 20 for varying levels of resolution. In
this comparison, it has been assumed that a good R-2R DAC
must have an INL less than 0.5 LSB. A similar comparison
[13] for the ladder of Fig. 11 with optimal values of
and is shown in Fig. 21. It should be apparent from
Fig. 21 and Fig. 20 that significant improvements in yield can
be obtained if an optimal area allocation strategy is used. Fi-
nally, Fig. 22 shows a comparison of the yield of the two R-2R
networks. In this figure, the networks are compared using the
conventional series, the conventional parallel and the optimal
area allocation layouts for different levels of resolution. This
comparison shows that the relative yield is bit-level and area
dependent. When the resolution is high, the yield improvement
is more significant. It was also shown that he optimal area allo-
cation for the R-2R DAC of Fig. 8 offers higher yield than the
optimal area allocation for the structure of Fig. 11. The smooth
curve of the yield and area relationship is intuitively expected.
If a resistor has area or with larger than , then it
will have smaller standard deviation of resistance with than
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Fig. 19. Yield of different configuration for feedback amplifier. “Opt” denotes
optimal area allocation for a given structure; “Ratio” denotes a ratio-based area
allocation strategy.

that with . If a resistor has area of whose value is between
and , then the standard deviation of resistance is also in

between.
It should be observed that in the yield comparisons, the issue

of the relative role of the variations in sheet resistance and
in contact resistance was intentionally not raised nor was the
issue of the values for the parameters that characterize the local
mismatch effects. The yield comparisons were intentionally
all made in the relative sense so that the results apply in the
general case since the values of the process parameters have
been normalized out. Although not explicitly stated, it has been
assumed in the yield assessment that a unit cell was used to
form all resistors and that larger resistors were obtained with
series/parallel connections of the unit cell.

V. EFFECTS OF OPTIMAL AREA ALLOCATION

ON OTHER CIRCUIT PROPERTIES

The issue of what effect optimal area allocation has on other
circuit characteristics deserves consideration. Since optimal
area allocation results were all dependent only upon how area
is distributed between various components and not upon the
component values themselves, the designer has the option of
keeping all resistance values the same as in the original circuit
or scaling the resistance values when adopting an optimal
area allocation approach. If the designer chooses to leave
the impedance values unchanged, then the circuit schematic
remains unchanged and essentially all other circuit charac-
teristics will remain unchanged as well, except possibly for
some second-order effects due to a change in parasitic in the
optimal area approach. If the designer chooses to also scale
the impedance values, however, when using the optimal area
allocation approach, the resultant circuit schematic will change
and this change could affect other characteristics of a circuit
such as linearity, power dissipation, signal swing, etc.

VI. PRACTICAL LAYOUT CONSIDERATIONS

The layout principles for area allocation that optimize
parametric yield for ratio-matched resistors and for R-2R
networks give little guidance on how the layout should be done
to achieve optimal performance and in many applications, it
will be difficult to practically allocate area to achieve optimal
yield. It should be re-emphasized that a common centroid
layout is generally necessary to minimize the effects of linear
gradient effects, that an interconnection of unit cells should
be used to minimize the effects of length and width variations
as well as contact resistance variations, and that well-known
layout matching methods such as maintaining a common cell
orientation, maintaining appropriate interconnect matching,
and managing peripheral or dummy peripheral devices are
important. Fortunately, it was also shown that the standard
deviation of the performance metrics discussed earlier have
a rather shallow minimum and, as such, near-optimal perfor-
mance can be obtained even if the optimal area allocation is not
precisely achieved.

The layout of the feedback resistors for an amplifier with an
integer gain such as 4 or 16 is easy to achieve with optimal area
allocation. For example, the gain of 4 can be achieved using
two unit cells connected in series for one resistor and two unit
cells connected in parallel for the second resistor and a common
centroid layout of these 4 cells is straightforward. It is difficult to
achieve equal area ratios, however, with some other gain values.
For example, an exact area ratio of 1 with a gain of 5 or 10
can not be readily achieved but for the gain of 5, five unit cells
can be connected in series to form one resistor and the parallel
combination of two strings of two resistors can be used to form
the second resistor. This will result in an area ratio of 1.25 or a
value of which provides near-optimal performance
as can be seen from Fig. 4. A gain of 10 can be achieved by
connecting 10 unit cells in series to form one resistor and by
connecting three strings of three resistors in series to form the
second resistor to achieve a value of .

A layout of the R-2R network to achieve the precise area al-
location for minimizing the standard deviation of the INL with
an interconnection of a practical number of unit cells can not be
realized. As with the ratio matching problem, however, near-op-
timal performance can be obtained with practical unit cell based
common centroid layouts. In the R-2R network, the biggest ben-
efits are obtained by maintaining slice area ratios close to the
optimum on the first few most significant bits in the network
with little additional benefits derived from optimal area scaling
for the latter bits in the network. As an example, consider the
R-2R network of Fig. 11 with the optimal values of
and . If area were assigned to an 8-bit R-2R array to
achieve a yield with optimal area allocation of 97.4%, simula-
tion results show that the yield for the standard series connec-
tion with the same total area would be 66.3% and the standard
parallel connection with the same total area would provide a
yield of 80.1%. If the “2R” resistor in the MSB block is real-
ized with a parallel series connection of 18 unit cells (parallel
connection of 3 strings of 6 resistors), the “R” resistor in the
MSB block is realized with a parallel series connection of 9
unit cells (parallel connection of 3 strings of 3 resistors), the
“2R” resistor in the second MSB block is realized with a par-
allel series combination of 8 unit cells and the “R” resistors in
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Fig. 20. Yield of (a) 6-bit; (b) 10-bit; (c) 12-bit; (d) 16-bit equal-current R-2R DACs.

the second MSB block is realized with a parallel series connec-
tion of 4 unit cells, all remaining “2R” resistors are realized
with the series combination of 2 unit cells, and all remaining
“R” resistors are realized with a single unit cell, simulation re-
sults show the yield will be 95.1%. Although not quite at the
optimal value of 97.4%, near-optimal yield is achieved with a
unit cell approach that is practical and that can be layed out in a
common-centroid configuration. For notational convenience we
term this the standard
cell allocation strategy. If instead of scaling just the two MSBs,
the first three MSBs are scaled with a parallel series connec-
tion using the stan-
dard cell allocation strategy, simulation results show that the
yield will be increased to 96.7%.

VII. EXTENSIONS

The concepts of optimal area allocation for ratio-sensitive re-
sistor networks can be extended to ratio-sensitive transistor or
capacitor structures but with some restrictions. Such extensions
will be briefly discussed in this section.

A feedback amplifier using MOS transistors biased in the
triode region to form the feedback network is shown in Fig. 23.

The nominal gain of the amplifier is given by

(55)

where and are the triode-region impedances of
and , respectively. These impedances are approximately

given by

(56)

where and are the width and length of the transistor, is
the threshold voltage, is the excess bias voltage of the
transistor, is the mobility, and is the oxide capacitance
density. If the random variation of the edges of the channel is
neglected, the local random deviations of , and have a
standard deviation proportional to the square root of the channel
area given by [4]

(57)

(58)

(59)
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Fig. 21. Yield of (a) 6-bit; (b) 10-bit; (c) 12-bit; (d) 16-bit binary-weighted-current R-2R DACs.

where the subscript means nominal value, the parameters
. and are process parameters characterizing the

standard deviation of , , and and is the area of the
channel area of the transistor. If these two transistors are biased
with the same excess bias voltages, it follows from a straight-
forward derivation that the normalized standard deviation of the
gain can be expressed as

(60)
where and are the channel areas for transistors and

, respectively, and where is the nominal excess
bias voltage. If the total channel area of and is fixed, it
follows that the standard deviation will be minimized when the
area of transistors area equal. This is the same result that was

obtained for the layout of resistors. As with the resistors, a unit
transistor cell would be used and parallel and series intercon-
nections of these cells would be used to realize the elements of
the feedback network.

A basic current mirror is shown in Fig. 24. The nominal cur-
rent mirror gain is given by the expression

(61)

If again the random variations of the edges of the channel are
neglected, it can be shown that the normalized standard devia-
tion of the mirror gain is given by

(62)
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Fig. 22. Yield of (a) 6-bit; (b) 10-bit; (c) 12-bit; (d) 16-bit R-2R DACs.

Fig. 23. Basic transistor feedback amplifier.

This RHS of (62) is similar to that of (60) and, thus, it can be
concluded that the standard deviation of the mirror gain will be
minimized for a given total channel area if the channel area of
the input and output devices of the mirrors are the same.

The issues of variance and absolute accuracy are distinct and a
particular layout or area allocation strategy that minimizes stan-
dard deviation may not necessarily give the best overall accu-

Fig. 24. Basic current mirror.

racy. For example, three circuits that provide a nominal current
mirror gain of 4 are shown in Fig. 25. In all cases, multiple in-
stantiations of a unit transistor cell are used to form the input and
output devices. The circuit of Fig. 25(a) is the most common and
all devices have essentially the same gate and source voltages.
The circuit of Fig. 25(b) is an equal area allocation strategy and
will provide the smallest variance in the mirror gain. The source
voltage of the upper cell on the input is, however, different than
that of the other 3 cells. The source voltages for the three upper
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Fig. 25. Different area allocation scheme for current mirrors with current
gain = 4.

cells on the input side in the circuit of Fig. 25(c) are all different
and different from those of the other two cells. The systematic
error in the mirror gains may not be the same for the different
area allocation schemes but the equal area allocation scheme
will exhibit the smallest standard deviation.

Accurately controlling capacitor ratios is also of concern as
is the parametric yield for analog circuits that depend upon ac-
curate capacitor ratios. In contrast to a resistor in which the area
and resistor value of a rectangular device can be independently
established, a rectangular capacitor (or actually any arbitrarily
shaped parallel plate capacitor) has a capacitance value that is
uniquely determined by and proportional to the capacitor area.
As a result, the component-ratio based area allocation scheme in
which the area is allocated in proportion to the capacitor ratio is
almost exclusively used for the layout of ratio-matched capac-
itors irrespective of whether the capacitor is a standard planar
vertical structure or a thick-metal MEM device. If the param-
eter defines the ratio of two capacitors, the compo-
nent-ratio area allocation requirement establishes a constraint in
the relationship between the area of the capacitors and the total
area given by

(63)

where is the nominal capacitor ratio and is the total area.
In what follows the discussion will be restricted to the vertical
planar capacitor although similar results apply to lateral MEM
structures as well. If it is assumed that the local random varia-
tions in the capacitance density are due to variations in the oxide
thickness, it follows that the standard deviation of the ratio is
given by

(64)

Fig. 26. Different area allocation scheme for capacitor ratio of 4.

where is a constant dependent upon the process that char-
acterizes the local random variations in the capacitance density.
This equation is similar to that of (7) for the gain of an amplifier
with resistive feedback and, thus, it can be concluded that the
yield penalty will be quite significant if capacitors ratios signif-
icantly different than 1 are required as was shown in Fig. 4.

As was the case for the resistor ratios, the standard deviation
for the capacitor ratio can be expressed in terms of the area of
capacitor , , as

(65)

If the component-ratio constraint of (63) could be removed,
then (65) could be minimized with respect to to obtain the
area allocation strategy for minimizing the standard deviation
which is

(66)

Paralleling the results for the ratio matching of resistors, it
follows on substituting (66) into (65) that the minimum standard
deviation is given by

(67)

Comparing with (64) it follows that for large or small values
of , the minimum given by (67) is considerably lower than
that obtained for the component-ratio area allocation scheme.

If ideal capacitors are available, an equal area allocation
scheme or a nearly equal area allocation scheme can be used.
For example, the circuit of Fig. 26 shows a standard area
allocation scheme and an optimal area allocation scheme for
a 4:1 capacitor ratio. Whether the optimal area allocation
scheme is practical or even feasible does, however, depend on
applications. In many applications the floating capacitor node
would cause unacceptable parasitic and/or charge accumulation
that would either be unacceptable or that could possibly cause
device failure.

VIII. CONCLUSION

Area-allocation between components in matching-critical ap-
plications has received minimal attention in the literature. Op-
timal area allocation strategies for several practical applications
including finite gain amplifiers, R-2R networks, R-string DACs,
and current mirrors have been introduced. It has been shown that
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the optimal area allocation strategies can provide a significant
reduction in variance for a fixed total area in some useful appli-
cations and, thus, a significant increase in yield when compared
to more standard area allocation schemes that are based upon the
component ratios. It was also shown that the random component
of the contact resistance is of growing concern in applications
requiring ratio-matched resistors and strategies for minimizing
the variance due to contact resistances were also developed.

APPENDIX

A. Contact Resistance Modeling

Consider the rectangular resistor with (n) contacts on each
side shown in Fig. 16. If the resistance in the metal is neglected,
the total resistance of this resistor can be approximated by

(A1)

where is the resistance contributed by the thin film sheet
resistance, is the resistance of the th contact on the left-
hand side of the structure, and is the resistance of the th
contact on the RHS of the structure.

Neglecting any gradient effects in the sheet resistance and
the contact resistances, resistors , and can be
expressed as

(A2)

(A3)

(A4)

where is the nominal resistance contribution from the thin
film sheet resistance, is the random component of .

is the nominal value of the local contact resistance,
is the random component of and is the random
component of .

It will be assumed that the random components of the contact
resistances are uncorrelated. From (A3), it follows that

(A5)
Since the random component of the contact resistance is small

compared to the nominal component, a power series expansion
for each of the terms can be used to linearize the sum in (A5).
Thus, by neglecting second- and higher-order terms in this ex-
pansion, we obtain

(A6)

By repeating the power series expansion process, it follows
that

(A7)

A similar approach can be used to obtain

(A8)

Substituting (A2), (A7) and (A8) in (A1), it follows that

(A9)
It follows from (A9) that the nominal value of the resistor is

(A10)

and the random component of the resistor is

(A11)

If it is assumed that the random components of the contact
resistance are identically distributed, it follows that

(A12)

Since the random variable in (A11) are assumed to be uncor-
related, it follows from (A9), (A10), (A11), and (A12) that the
value of the resistance R can be approximated by

(A13)

Or equivalently as

(A14)

By dividing both sides of (A14) by , we can obtain an
expression for the variance of the normalized resistance ,
which takes the form

(A15)
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