
 

Code-Density Test of Analog-to-Digital Converters Using Single Low-
Linearity Stimulus Signal 

 
 

Le Jin 
National Semiconductor Corporation 

2900 Semiconductor Drive 
Santa Clara, CA 95051 

le.jin@nsc.com 
 
 

Degang Chen and Randall Geiger 
Electrical and Computer Engineering 

Iowa State University 
Ames, IA 50011 

{djchen, rlgeiger}@iastate.edu 
 
 

Abstract 
 
 High-precision ADC testing is a challenging 
problem because of its stringent requirement on test 
signal’s linearity. This work introduces a method using 
a nonlinear stimulus signal for testing linearity of 
high-resolution cyclic and pipelined ADCs by 
exploiting their architecture information. Simulation 
and experiments show that 16-bit ADCs can be tested 
to 1- LSB accuracy by using a 7-bit linear signal. This 
approach provides a solution to both the production 
and on-chip testing problems of high-resolution ADCs. 
 
 
1. Background 
 
 The analog-to-digital converter (ADC) is one of 
the world’s largest volume mixed-signal products and 
is viewed as one of the system drivers for AMS chip 
design [1]. Linearity test of high-performance ADCs is 
a well-known important and challenging problem. A 
precision linearity test can help validate the design of 
an ADC, reduce the number of wasted parts, and 
enable calibration, so accurate test methods are 
necessary for high-resolution high-speed ADCs.  
 The ADC testing capability is mainly determined 
by three enabling technologies: fast data capture, 
precision clock timing and linear stimulus generation 
[2]. The bottle neck in testing of next generation high-
performance ADCs is the linear signal generation, as 
the present technologies on timing and data capture can 
handle the testing need of up coming ADCs. The code-
density test method [3, 4] is widely adopted for testing 
ADCs’ static linearity in the industry, because its 
implementation is straightforward and its 
computational complexity is low. The code-density 
method uses a ramp or sine wave as the stimulus 
signal, with linearity at least one decade better than the 
specification of the ADC under test. This linearity 

requirement makes the test of high-resolution ADCs a 
very challenging problem. 
 The authors developed a stimulus error 
identification and removal (SEIR) algorithm to test 
linearity of high-resolution ADCs using two nonlinear 
signals [5], and a strategy that minimizes the effect of 
environment nonstationarity on the test results [6]. The 
combination of the two methods provides a solution to 
testing high-performance ADCs utilizing low-linearity 
stimuli in a realistic time-varying environment. This 
methodology is a general I/O based testing method. It 
takes the ADC under test as a black box and does not 
make use of any information on the ADC architecture.  
 Further investigation shows that exploiting 
knowledge on the ADC architecture can help simplify 
the SEIR testing algorithm. This work introduces such 
an approach using a single nonlinear signal for testing 
ADCs with some widely adopted architectures, 
including cyclic and pipelined ADCs. It first identifies 
the input nonlinearity based on the ADC’s structure 
characteristics, and then accurately measures the 
ADC’s linearity. Simulation and experimental results 
show that 16-bit ADCs can be tested to 1-LSB 
accuracy by using a 7-bit linear signal. This approach 
provides a solution to both production and on-chip 
testing problems of high-resolution ADCs, since it 
does not have stringent requirement on the stimulus 
signal and its computational complexity is low. 
 
2. Characteristics of Pipeline ADCs 
 
 Among different ADC architectures, the pipelined 
ADC is a balanced combination of the speed, accuracy, 
and power consumption. A general block diagram of a 
pipelined ADC is drawn in Fig. 1 [7]. It usually 
consists of a front-end sample-and-hold amplifier 
(SHA), k conversion stages, and some digital circuits 
for output code generation. The sampled input voltage, 
v0, will be quantized by a low-resolution sub-ADC in 
the first stage, and the residue is amplified and sent to 

25th IEEE VLSI Test Symmposium (VTS'07)
0-7695-2812-0/07 $20.00  © 2007



 

the second stage. The subsequent stages will process 
the residue of the previous stage in a similar way. The 
output codes of these stages will be appropriately 
assembled to give a quantized value of the input with 
very high accuracy.  
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Fig. 1. Block Diagram of an n-bit Pipeline ADC. 

 
2.1. Conversion Stage Modeling 
 
 Different sources contribute to the final errors in 
the ADC. The error sources include distortion of the 
front-end SHA, mismatches and linearity errors in the 
sub-ADCs and DACs, gain error and nonlinearity of 
the residue amplifier, and so on. Some of the error 
sources do not cause significant problems. For 
instance, existing front-end SHA circuits can have very 
low distortion at extremely high speed, so they are 
usually viewed as linear. Other sources can cause 
errors such as non-monotonicity, missing codes, and 
nonlinear transfer characteristics.  
 Common terminologies for ADC parameters and 
its linearity specifications used in the paper will follow 
the definitions in [8]. Using the one-bit-per-stage 
architecture as an example, the transfer function of the 
first conversion stage of a pipelined ADC can be 
summarized into a mathematical model as 
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where Vin is the input voltage, d1 is the one-bit digital 
output of the first stage, v1 is the residue of the first 
stage and the input to the second conversion stage, vo1 
is the offset voltage, vp1 and vn1 are input voltages 
generating a zero residue, and g1(·) is a transfer 
function representing nonlinear effects of the first 
stage’s residue amplifier. It is assumed the front-end 
SHA is linear, so v0 = Vin in Fig. 1.  

 Ideally, the offset voltage is zero, and the input 
voltage equal to +/– Vref/2 should generate a residue 
voltage equal to zero. Mismatch errors will cause them 
to deviate from the desired values. The transfer 
function g1(·) is supposed to be a straight line, but the 
actual gain will drop as the output voltage increases 
[9]. Fig. 2 shows a realistic residue transfer curve in 
solid lines, where dashed lines compose the ideal 
curve. Errors in the figure are exaggerated for a better 
visualization. 

 
Fig. 2. Transfer curve of residue amplification. 

 
2.2. Transition Level Characterization 
 
 The residue voltage of the first stage, v1, will be 
quantized by the following stages. To v1, these stages 
work as an n–1 bit sub-ADC with transition levels τk, 
k= 1, 2, …, N/2–1, where N=2n. It is easy to show that 
when v1 goes across a specific τk, corresponding Vin 
crosses a transition level of the overall ADC Tk’, 
because a change in the output of the following stages 
is obviously a change in the output of the whole ADC. 
Since the first stage’s output can have 0 and 1 two 
values, v1 = τk is associated with two input voltages Vin 
= Tk and Tk+N/2 that are smaller and larger than vo1, 
respectively, as marked with dash-dotted lines in Fig. 
2. Substituting these relations into (2), we get 

,0),( 111 =−= dvTg nkkτ  (3) 
and 

,1),( 112/1 =−= + dvTg pNkkτ  (4) 
for k from 1 to N/2 – 1. Taking the inverse function of 
g1(·) on above equations gives 

.)( 12/1
1

1 pNknkk vTvTg −=−= +
− τ  (5) 

We can rewrite the second equality in (5) as  
.112/ npkNk vvTT −=−+  (6) 

It means that the difference between Tk+N/2 and Tk is a 
constant vp1–vn1. 
 Equation (6) is a general relationship between the 
upper half transition levels, Tk with k > N/2, and lower 
half transition levels, Tk with k < N/2, of a pipeline 
ADC. It is applicable to all k = 1, 2, …, N/2-1. This 
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result is not surprising because the residue 
amplification and quantization for input voltages 
smaller and larger than the offset vo1 are identical, 
except for the constant voltage shift vn1 and vp1. Based 
on the above observation, we conclude that (6) is 
correct for other popular architectures such as cyclic 
ADCs and successive approximation register (SAR) 
ADCs with a binary-weighted internal DAC, whose 
transfer function are repeated for small and large input 
voltages. Therefore, the algorithm that will be 
developed in the following section is applicable to 
these types of ADCs as well. 
 
3. ADC Test Using Nonlinear Stimulus 
 
 We are going to introduce an algorithm uses a 
nonlinear signal to test high-resolution ADCs with 
pipeline, cyclic or other similar architectures. The 
input nonlinearity will be first identified based on the 
ADC’s inherent property. Linearity of the ADC itself 
will then be accurately estimated. 
 
3.1. Input Signal Modeling and Histogram Test 
 
 We model the input signal s(t) as a linear ramp 
plus a nonlinear term F(t), 

).()( tFtts +=  (7) 
The amplitude and the offset of the input signal do not 
directly affect the linearity test results, so the linear 
component’s coefficient is normalized to one and the 
offset assumed to be zero in (7).  Testing the ADC with 
this input signal, we can get a set of histogram count 
Hk’s for code k from 0 to N – 1. The transition levels of 
the ADC can be estimated using the histogram counts 
as 
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in (8.a) is the measured time at which the output code’s 
transition between k – 1 and k happens, and (8.b) 
explicitly gives the estimation error ek. However, the 
nonlinear component F(t) is unknown, so (8.a) cannot 
give the value of Tk. If we would like to use a nonlinear 
signal in ADC testing, we have to accurately identify 
F(t) first. 
 
3.2. Test Using Single Nonlinear Signal 
 
 Based on our discussion in Section 2, we know 
that the difference between the true Tk+N/2 and Tk is a 
constant. So the difference between the corresponding 
estimated values of them should be a constant as well 

with some estimation error effects. Plugging (8.b) into 
(6) gives 

.ˆˆ
2/112/ kNknpkNk eevvTT −+−=− ++  (10) 

Substituting (8.a) into (10), we get 
.)()( 2/112/2/ kNknpNkkkNk eevvtFtFtt −+−+−=− +++

 (11) 
If the difference between tk+N/2 and tk is not a constant, it 
is because of the input nonlinearity. 
 In [5], we have successfully shown that series 
expansion over a set of basis functions and the least 
squares (LS) method can be used to identify the input 
error in two identical nonlinear signals with a constant 
offset in between. We will use this technique again in 
this paper. F(t) can be expanded as 
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where {Fj(t), j =1, 2, …, M} is a set of complete 
functions, and αj’s are unknown coefficients. This 
expansion can be used in (11), and we can get 
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where ∆v = vp1 – vn1. The left hand side of (13) contains 
only error terms. Ideally they should be zero. We have 
an abundant number of, N/2 – 1, equations like (13) for 
k from 1 to N/2 – 1, because N can be as large as tens 
of thousands for high-resolution ADCs. Usually the 
input nonlinearity can be concisely described by a 
reasonable small number of basis functions, i.e. M is 
much smaller than N/2 – 1. So we have plenty of 
equations, linear in a small number of variables. 
Therefore, the LS method can be used to estimate αj’s 
and ∆v. If we are going to minimize the target function 
of the total energy of estimation errors, the 
corresponding estimated values are, 
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Substituting these estimations into (8.a), we can now 
get the ADC transition levels as 
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for all k from 1 to N – 1. Based on these estimated 
transition levels, we can calculate the linearity 
specifications of interest, such as INL and DNL, 
according to their definitions. Because the input 
nonlinearity is identified and removed, the linearity test 
result has very high accuracy. 
 
4. Simulation Results 
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 A behavioral level model of pipeline ADCs was 
built in simulation for validating the performance of 
the proposed algorithm. The model includes the gain 
error, mismatch errors, amplifier nonlinearity, and 
other common nonideal effects in a real integrated 
circuit. 16-bit ADCs generated with this model have 
about 4 LSB INL. A noise with 2-LSB standard 
deviation was added to the test signals in simulation. 
This is sufficient to represent the noise in a typical test 
environment. The total number of samples is 
equivalent to about 16 samples per code on average. 
 
4.1. Single ADC Testing 
 
 True INLk of a simulated 16-bit ADC is plotted on 
the top of Fig. 3. It was measured with an ideal clean 
ramp signal without any noise. The true INL is 3.41 
LSB. The simulated ADC was then tested with a 6-bit 
linear ramp signal. Low-order even and odd nonlinear 
components are synthesized for the input ramp. The 
stimulus signal has more than 1000 LSB errors at the 
16-bit level, as shown in Fig. 5. This is an exaggerated 
nonlinearity for validating the performance the 
proposed strategy. Signals with much better linearity 
can be easily generated in reality. The nonlinear error 
of the test signal was first characterized using the 
parameterization and LS algorithm introduced in 
Section 3. The INLk of the ADC was then calculated 
and plotted on the bottom of Fig. 3. The estimated INL 
is 3.62 LSB, which is very close to the true value. The 
true and tested INLk curves match very well to each 
other and the difference between them is given in Fig. 
4. All the INLk test errors are less than 1 LSB at the 16 
bit level. This confirms that proposed algorithm can 
accurately estimate and remove the input error and test 
16-bit ADCs performance using a nonlinear signal. 

 
Fig. 3. True and estimated INLk.  

 
Fig. 4. Difference between INLk measurement 

results using ideal and nonlinear ramps. 

 
Fig. 5. Input error of the nonlinear ramp signal. 

 
4.2. Multiple ADC Testing 
 
 The simulation was repeated more times to 
statistically characterize the performance of the 
algorithm. For saving simulation time, 14-bit pipelined 
ADCs were used as the device under test in these runs. 
Additive noise has a standard deviation of 2 LSB at the 
14-bit level. The estimated INL using the single 6-bit 
linear signal are plotted with respect to the true values 
in Fig. 6. It can be observed that pairs of measured and 
true INL values are very well distributed along the 45 
degree line in the figure. That means the estimated INL 
values accurately track the true values for ADCs with 
different linearity performance. The residue INL 
estimation errors are given in Fig. 7. All of the errors 
are less than 0.5 LSB. These data show that the 
proposed algorithm can consistently test high-
resolution ADCs using one low-linearity signal and is 
robust to different ADC performance levels. 
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Fig. 6. Measured INL vs. True INL. 

 
Fig. 7. Residue INL estimation errors. 

 
5. Experimental Results 
 
 Data on 16-bit commercial ADCs collected at 
Texas Instruments are presented below. The ADCs 
under test have about 1 to 2 LSB INL, which is a 
known testing challenge. 32 samples per code on 
average are taken. The INLk of the ADC was first tested 
with a linear ramp signal generated by a 20-bit sigma-
delta DAC using the conventional histogram 
algorithm. The measured result is plotted on the top of 
Fig. 8. This result will be used as an accurate reference 
in the following comparison. 
 A nonlinear signal was generated by programming 
the input to the precision DAC. The input nonlinearity 
is plotted in Fig. 9. This signal has more than 300 LSB 
errors at the 16-bit level, so it is about 7-bit linear. This 
signal was used to test the same ADC again, and the 
measured INLk is plotted on the bottom of Fig. 8. To 
assure the robustness of the proposed methodology, the 
detailed experimental setup was unknown to the test 
program and the input error was independently 
identified by the proposed algorithm. Using a 7-bit 
linear stimulus signal to test 16-bit ADCs is an extreme 
example. Our purpose is to sufficiently validate the 
capability of the proposed algorithm. Signals with 

much better linearity can always be generated and used 
in real-world practices. 

 
Fig. 8. Measured INLk. Top: from 20-bit linear signal. 

Bottom: from 7-bit linear signal. 

 
Fig. 9. Input Nonlinearity. 

 
Fig. 10.  Difference between INLk measurement 

results using linear and nonlinear signals. 
 

 The two INLk plots measured with the 20-bit linear 
signal and the 7-bit linear signal are very close to each 
other. The estimated INLs are 1.39 and 1.21 LSB, 
respectively. The difference between the two INLk 
curves is plotted in Fig. 10. At different codes, the 
difference is almost always smaller than 1 LSB, and a 
significant portion of it comes from the noise in the 
measurement system, which can be reduced by 
increasing the total number of samples.  
 The experiment was repeated on a different ADC. 
The INLk curves measured with the same linear and 
nonlinear signals are plotted on the top and bottom of 
Fig. 11, respectively, and the INL is measured as 1.66 
and 1.45 LSB. Difference of estimation for the 2nd 
ADC is given in Fig. 12. All the errors are less than 1 
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LSB at the 16-bit level. This further confirms the 
capability of the proposed algorithm for testing high-
resolution ADCs with single nonlinear signal. 

 
Fig. 11. Measured INLk. Top: from 20-bit linear 

signal. Bottom: from 7-bit linear signal. 

 
Fig. 12. Difference between INLk measurement 

results using linear and nonlinear signals. 
 
6. Conclusions 
 
 A histogram-based ADC linearity testing approach 
using a single nonlinear stimulus signal is introduced. 
This approach is applicable to some widely used 
architectures, such as cyclic and pipelined ADCs. The 
proposed algorithm exploits the ADC architecture 
information in data processing. It first identifies and 
removes the input errors using the series expansion and 
least squares method, and then accurately measures the 
ADC’s linearity. Simulation and experimental results 
show that 16-bit ADCs can be tested to 1-LSB 
accuracy by using a 7-bit linear signal. This approach 

provides a promising solution to both the production 
and on-chip testing problems of high-resolution ADCs, 
since it does not require high-linearity stimulus signals. 
The proposed idea can be extended to develop similar 
algorithms for other AMS circuits testing. 
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