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Abstract—Traditional linearity testing of ADCs involves 
using a spectrally pure or a highly linear stimulus, along 
with a large number of samples per code to average out 
the effects of noise. Test equipments need to house 
expensive instruments to provide the highly linear 
stimulus. The large number of samples required for the 
procedure results in long test times. These two factors are  
prime contributors to the test cost. In this paper, 
algorithms which use low linearity stimuli and a Kalman 
Filter to reduce both the hardware resources and the test 
time for the test procedure have been proposed. 
Simulations results for a 14-bit ADC show that a 7-bit 
linear stimulus with one sample per code can be used to 
measure the INL of the ADC with a maximum estimation 
error of 1 LSB. 
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Density Testing, Samples per code, INL (Integral Non 
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I. INTRODUCTION  
Static performance testing of Analog to Digital Converters is 
one of the most challenging tasks in mixed signal circuit 
testing. Code density testing [1]-[2] is the standard method 
for measuring the static performance parameters, INL and 
DNL of the ADC under test. Conventional code density 
testing involves spectrally pure or highly linear stimulus that 
are typically 3 or more bits more linear than the ADC under 
test. Large numbers of samples are collected to average out 
noise for better measurement precision and accuracy. During 
production test, code density testing is carried out using very 
expensive Automated Test Equipments (ATE).Considering 
the fact that ADCs are high volume products, any small 
saving on hardware resources and/or test time for a single 
ADC will have a huge impact on the entire test procedure 
cost. Recently introduced methods [3]-[4] for linearity testing 
of ADCs dramatically relax the linearity requirements on 
signal generators. It has been shown in [5] that with the 
knowledge of input noise and error sources in the circuit, 
Kalman Filter can be used along with code density testing to 
obtain better estimates of INL of ADCs. In the current work, 
two methods that use two low linearity stimuli, SEIR and the 
algorithm in [4](denoted as KHK algorithm), are used with a 
Kalman filter to obtain accurate estimates of INL with small 
number of samples. The computational complexity of these 
two new methods is not of concern given the available 
computation power in today’s computers. The fewer number 

of samples required by the proposed algorithms to achieve a 
fixed accuracy, directly results in the reduction of test time, 
as it reduces the data acquisition time. The rest of the paper is 
organized as follows. Section II reviews the SEIR algorithm, 
the KHK algorithm and Kalman Filter for the two algorithms. 
Section III discusses Simulation results and Section IV, the 
conclusion. 

II. INL OPTIMIZATION USING KALMAN FILTER  
A.  Kalman Filter 
The Kalman Filter is an efficient recursive estimator based on 
linear dynamical systems. The essence of the filter is to obtain 
estimates of the state variables from noisy measurement data. 
The state variables and the measurement variables are 
represented by the following dynamical system of equations 
(discrete case): ݔ[k] =F[k]. ݔ[k-1] + G.u[k] + w[k]                                       (1) ݔሶ[k] = H[k]. ݔ[k] + v[k]                                                                                     (2) 

where, ݔ[k] = state variable/process, ݔሶ[k] =measurement 
variable/process, ݑ[k] is a known vector. w[k] is the process 
noise and v[k] is the measurement noise. w[k] and v[k] are 
assumed to be white Gaussian with zero mean, and are not 
correlated with each other.  

Kalman Filter Algorithm:  

In the Kalman Filter algorithm, the estimate of the state from 
previous time step and current measurement are used to 
calculate the current state based on the model specified by (1) 
and (2). The Filter in the proposed algorithm is used to obtain 
optimal estimates of INL[k] of the ADC from noisy INL[k] 
measurements. 
After initializing the state and error covariance matrix  ݔ[0] 
and PM[0] respectively, the below equations are executed from 
k= 0 to M variables of interest.   

Step 1:   KP[k] = PM[k].H[k]tr (H[k]. PM[k].H[k]tr + R)-1 

Step 2:   ݔ[݇] = ݔ-[k] + G. ݑ[k] + KP[k] ( ݔሶ[k] – H[k].  ݔ[k] )  

Step 3:   P[k] =(I – Kp[k].H[k])PM[k] 
Step 4:    ݔ-[k] = ݔ[k].F[k] 

Step 5:    PM[k+1]=F[k].P[k].F[k]tr + Q 

KP[k] is the Kalman gain, R is the measurement noise 
covariance matrix, Q the process noise covariance matrix and 
PM[k] is the prediction error variance. The ADC linearity test 
problem is formulated in such a way that the above equations 
can be directly used to characterize the static parameters of the 
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ADC. For a detailed description of the Kalman filter refer to 
[6]. 

B. Stimulus for the SEIR and KHK Algorithm: 
The SEIR algorithm and KHK algorithm use two stimuli, R1 
and, R2, which is the shifted from R1 by a constant offset, α. 
Two sets of histogram counts, C1 and C2,, are obtained from  
R1 and R2 respectively. For a detailed working of the 
algorithms refer to [3] and [4].Simple signal generators 
described in [7] can be used to generate the stimuli. 

C. Kalman Filter for SEIR(denoted as SEIR-KF) 
The SEIR algorithm uses the histogram data, C1 and C2, to 
identify the non-linearities of the stimulus. This information 
is then used to calculate INL[k]s. The equation used to 
estimate INL[k] is: 
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In the above expression, N = 2n, where n is the resolution of 
the ADC, aj is the co-efficient of the basis function Fj(t), t1[k] 
or t2[k]  is a measure of the transition time at the transition 
level k of the ADC, obtained from the histogram data as 
follows: 
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Changing the index of (3) from k to k-1,
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Subtracting (4) from (3) we get, 
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The DNL[k] in LSBs can be expressed in terms of transition 
times, given by (4) and (5) as,  

DNL[k] = (N-2) (t[k] – t [k-1]) – 1                                      (8) 

Substituting (8) in (7), we have,
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Expression (9) is the state expression for the Kalman Filter to 
be used with the SEIR algorithm. INL[k]  is viewed as the 
state variable and DNL[k] is modeled as the state process 
noise. DNL[k] is approximated as white Gaussian random 
variable with zero mean and variance Q. 

E( DNL[k].DNL[l] ) ≈ Q.δkl ,                                              (10) 

where E() is the expectation operator, δkl  is the dirac delta 
function, δkl =1 only when =l and δkl =0 elsewhere. 
The INL[k] estimates obtained from the SEIR process serve 
as noisy observations from which optimal estimates are 
obtained using the Kalman Filter. Thus the process 
measurement equation is: 

INL[k] INL[k] v[k] =  +                                                       (11) 

v[k] is the measurement noise that is approximated as white 
Gaussian with zero mean and variance R. 

E( v[k].v[k] ) ≈ R.δkl                                                             (12) 

In a flash type ADC structure, mismatch among components 
and comparator errors result in DNL[k]. This can be 
characterized for a family of ADCs. The distribution of   
DNL[k]s for such ADCs remains fairly constant .Q is thus 
characterized. The variance of v[k] is not known before hand. 
Its value can be approximated by characterizing the noise in 
the test environment.  

Comparing (9) and (11) with (1) and (2), we get the following 
matrices for the Kalman Filter: 

DNL DNL NOISE NOISEF [1], H [1], Q [ ], R [ ]. .σ σ σ σ = = = =     , 

1 2 MG [a a a ] =  ... , 

1 2 1 2
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u[k] + − − − −  ;

              + − − − −

= [ 
 ڭ 

             1 2 1 2M M M MF (t [k]) F (t [k]) F (t [k 1]) F (t [k 1])]+ − − − −  

The flowchart in Figure [1] summarizes the procedure using 
Kalman Filter with SEIR. 

D. Kalman Filter for KHK Algorithm 
The KHK algorithm characterizes the stimulus by evaluating 
the slope of the stimulus at every code index using histogram 
data. This information is used to estimate the voltage offset, α, 
followed by INL estimation. 

The KHK algorithm can be described in the following steps: 

Step 1: The average of histogram data obtained from  
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             the two ramps is calculated. 
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Step 2: The cumulative difference of histogram data from the  
             two ramps is calculated. 
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Step 3: The shift voltage, α, is estimated. 

 N 2

i 1

N 2
ˆ

C[i]

D[i]

α −

=

−
 = 

∑
                                                             (15)  

Step 4: The code widths are then estimated using: 

C[i]
ˆcw[i]

D[i]
α =                                                         (16) 

From the code widths, the INL[k] s and the DNL[k] s can be 
calculated as shown in [1]. The Kalman Filter model used in 
this case is a simple one as described in [5].The INL[k] 
estimates obtained using the above algorithm serve as noisy 
observations for the Kalman Filter. Thus have the 
measurement process equation: 
INL[k] INL[k] v[k] =  +                                                 (17) 
The state variable INL[k] is the Kalman filter estimate 
obtained from the noisy measurements, INL[k] .The state 
process equation is : 
INL[k] INL[k 1] DNL[k] = −  +                                                        (18) 

The DNL[k] and v[k] are approximated to have a white 
Gaussian distribution with variances Q and R respectively. 

Comparing (17) and (18), with (1) and (2), we get the 
following matrices for our Kalman Filter: 

DNL DNL NOISE NOISEF [1], H [1], Q [ ], R [ ]. .σ σ σ σ = = = =      

G [zeros]=  

The block diagram in Figure [1] summarizes the test 
procedure using Kalman Filter with KHK Algorithm.The 
models that are described in this section have been developed 
for a flash type ADC structure. The models can be easily 
extended to Pipelined ADC structure as shown in [6]. 

III. SIMULATION RESULTS 
Simulation conditions: 
The low linearity stimulus used for simulations is 7-bit linear, 
generated from simulations of signal generator circuit 
suggested in [7]. The ADC that has been used for simulation 
is a 14-bit flash type ADC. The INL of the ADCs used for 
simulations varies from 0.5LSB to 14LSB. The second ramp 
is shifted from the first ramp by 150 LSBs.For the algorithm, 
24 sinusoidal basis functions are used to characterize the non-
linearity of the stimulus. The simulations have been carried 
out for standard deviation of additive input noise, σNOISE, and 

different number of samples per code, Ns. For each pair of 
parameters, σNOISE and Ns, the four algorithms are run 1000 
times. The mean and the standard deviation of the maximum 
estimation error are reported in Table1. 
Figure [1] shows a plot of the true INL[k] of the ADC with 
those estimated using SEIR, and the proposed algorithm, 
SEIR-KF. The INL[k]s are estimated with Ns = 8 samples per 
code for an input noise and a σNOISE = 0.5 LSB. The first plot 
shows true INL[k] along with those obtained with SEIR and 
SEIR-KF. The second plot is a zoomed in version of the first 
plot over a few bins. In the Error plot the improvement in the 
estimation error for the SEIR-KF is evident. Similar trends 
can be observed in plots of KHK and KHK-KF algorithms. 

 

  

Figure 1: Flowchart: SEIR-KF /KHK-KF 

 
Figure 2: INL and INL estimation error plots for SEIR-KF 
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                                  Table 1: Simulation Results 

σNOISE
0.25 LSB 0.5 LSB 1 LSB 2 LSB 3 LSB

Ns AlgorithmsμMAX_ERR σMAX_ERR μMAX_ERRσMAX_ERRμMAX_ERRσMAX_ERRμMAX_ERRσMAX_ERRμMAX_ERRσMAX_ERR

SEIR 0.4916 0.0624 0.709 0.09049 1.042 0.143 1.5998 0.2428 2.1067 0.376

8 SEIR-KF 0.3621 0.0606 0.477 0.08728 0.698 0.137 1.1127 0.239 1.4924 0.367
KHK 0.4955 0.0632 0.714 0.0911 1.055 0.1433 1.622 0.244 2.146 0.375

KHK-KF 0.3637 0.0611 0.495 0.0876 0.768 0.1397 1.147 0.2422 1.5972 0.3717

SEIR 0.691 0.086 0.991 0.1267 1.487 0.208 2.288 0.376 3.007 0.513
4 SEIR-KF 0.4649 0.084 0.6267 0.1237 0.923 0.199 1.504 0.239 2.091 0.509

KHK 0.696 0.0866 1 0.129 1.505 0.209 2.322 0.383 3.069 0.517
KHK-KF 0.4645 0.0849 0.6256 0.1243 0.967 0.204 1.604 0.373 2.178 0.512

SEIR 0.9634 0.12 1.3972 0.1787 2.088 0.288 3.229 0.536 4.1965 0.745
2 SEIR-KF 0.5945 0.116 0.8104 0.1724 1.247 0.276 2.133 0.531 2.89 0.741

KHK 0.9725 0.1216 1.411 0.179 2.1231 0.2959 3.288 0.5296 4.288 0.746
KHK-KF 0.6078 0.169 0.828 0.177 1.2616 0.286 2.06 0.536 2.976 0.746

SEIR 1.3895 0.196 1.947 0.2535 2.93 0.4018 4.49 0.6998 5.791 1.097
1 SEIR-KF 0.879 0.1929 1.072 0.2438 1.652 0.397 2.75 0.687 3.911 1.074

KHK 1.4262 0.209 1.985 0.2673 3.011 0.466 4.6077 0.7289 6.163 1.099
KHK-KF 0.9187 0.2056 1.1205 0.2438 1.7821 0.4218 3.042 0.718 4.254 1.0838

 
 

Table 1 summarizes the results of the simulations carried 
out in MATLAB. From the table it can be concluded that 
using a Kalman filter improves the performance by at least 
0.13LSB (For Ns=8, σNOISE = 0.25LSB with SEIR-KF). 
For the case of σNOISE = 3LSB and Ns=1 sample per code, 
the improvement in the performance is as high as 1.9 LSBs 
(With SEIR-KF). 
The maximum error in INL estimation that is acceptable 
during testing is often dictated by the target application of 
the ADC. For example, consider a case where the 
maximum acceptable estimation error is 1LSB and the 
noise in the tester setup has a standard deviation of around 
0.5LSB. From the table, the SEIR algorithm and KHK 
algorithm would require at least Ns=4 to achieve the level 
of performance. With the proposed approach, Ns=1 can be 
used to achieve the same level of accuracy that SEIR 
algorithm or KHK algorithm achieves with Ns=4.The 
trade off here is a slight increase in computational 
complexity. But this is negligible given the computation 
power of today’s PCs. Thus the data acquisition time and 
hence the test time is scaled by 4.This method also 
employs a low linearity stimulus, thus obviating the need 
for a spectrally pure or a highly linear stimulus. 

IV. CONCLUSION 
Optimizing static performance testing by using Kalman 
Filter with two low-linearity stimulus based linearity 
testing algorithms has been discussed. Two simple models 
for linearity testing of ADCs to be used in Kalman Filter 
have been developed. By employing the SEIR algorithm 

and KHK algorithm with a Kalman Filter it has been 
shown that test cost can be reduced by reducing both test 
time and hardware resources.  
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