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Abstract—The Fast Fourier Transform is the standard 

approach for spectral testing. However, its correct application 

to sinusoidal signals requires either strict coherent sampling, 

or careful windowing, or other methods that are not 

computationally efficient. This paper introduces an improved 

method for achieving accurate and robust spectral testing for 

sinusoidal signals without the need for coherent sampling or 

windowing. Theoretical analysis, extensive simulation results, 

and experimental results show that the proposed method is 

always faster than the original method and robust when the 

signal frequency is close to Nyquist frequency. Statistical 

analysis and comparative studies demonstrate that the 

proposed algorithm achieves almost the same spectral testing 

accuracies as those obtained under perfect coherent sampling.  

I. INTRODUCTION 

Spectral performance of an integrated circuit is of critical 
concern in many important application areas such as signal 
processing and communications. It is well known that DFT 
(Discrete Fourier Transform) or FFT (Fast Fourier 
Transform) is the most prevalent method for spectral testing. 
However, when performing FFT for spectral testing of 
sinusoidal signals, one must make sure that the data record 
being used in the FFT algorithm represents exactly an integer 
number of periods of the signal. In other words, the signal 
frequency and the sampling clock frequency of the data 
acquisition system must satisfy coherent condition. In FFT 
algorithm, even the slightest mismatches between the two 
frequencies will cause the frequency leakage phenomenon in 
which energy from the fundamental spectral line is spread 
into neighboring frequencies causing the appearance of a 
“skirt” around the spectral line. 

In order to combat the frequency leakage, the IEEE 
standard [1] as well as industry best practice is to require 
coherent sampling, meaning that the sampling clock signal 
should be perfectly synchronized with the signal under test 
so that an integer multiple of signal periods are captured in a 
data record. When this is guaranteed, direct use of FFT is 
permitted and the data analysis is computationally very 
efficient. Unfortunately, strict coherent sampling is difficult 
to maintain, especially for on chip implementation. 

Another alternative method is to use the windowing 
technique [2, 3] while allowing noncoherent sampling. This 

technique does not remove the skirting due to non-
coherency, rather it merely suppresses the skirting levels at 
frequencies far away from the fundamental frequency. By 
doing so it alters the heights of the original spectral lines. 
Care must be taken in order to correctly recover the spectral 
lines. Another limitation is due to the fact the amount of skirt 
suppression is limited and hence it is not sufficiently 
accurate for many high resolution application. 

Other methods to combat spectral leakage include 
singular value decomposition [4], 2-D FFT [5] and filter 
banks [6]. These methods are accurate but they are 
computationally very inefficient. 

In order to overcome the shortcomings of the above 
methods, the concept of fundamental identification and 
replacement was first introduced in [7]. In this method, the 
amplitude, frequency and phase of the fundamental harmonic 
component are estimated firstly. Then the noncoherent 
fundamental harmonic component was replaced by a sine 
component that has the same amplitude and phase but a 
slightly modified frequency so that it becomes coherent with 
the sampling clock. The method did not require coherent 
sampling and windowing. However, the method is robust 
only when the signal frequency is not very high. It is 
vulnerable when the signal frequency is close or above 
ADC’s Nyquist frequency. Furthermore, the method is 
occasionally not computationally efficient if the data record 
length M has larger prime factors, especially M is a prime 
number.  

An improved fundamental identification and replacement 
technique is proposed in this paper. The method can achieve 
accurate and robust spectral testing for sinusoidal signals 
without the need for coherent sampling or windowing. The 
improved method works well when the signal frequency is 
close to Nyquist frequency. Furthermore, the method is 
computational more efficient than the original one. In 
Section II, an improved fundamental identification and 
replacement technique is proposed. The simulation and 
experimental results are reported in Section III and IV 
respectively. Section V presents statistical analysis of 
extensive simulation results showing that the proposed 
method achieves spectral testing accuracies comparable to 
those obtained with perfect coherent sampling in an ideal 
noise-free environment. Section VI concludes this paper. 
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II. THE IMPROVED FUNDAMENTAL IDENTIFICATION   

AND REPLACEMENT TECHNIQUE 

 

     Let fs be the sampling frequency, Ts=1/fs the sampling 

intervals, fi the unknown input signal frequency, and M0 the 

nominal data record length. Then J=M0fi/fs=J0+∆ will be the 

number of periods input signal in the data record, where J0 

is the integer part of J, ∆ is the fraction part of J. J0 and M0 

are assumed to be co-prime. ∆ is unknown, so is J (J0 could 

be known). 

Let the input signal be  
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The samples of x(t) at sampling rate fs are given by: 
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In (5),  x1[k] is the fundamental harmonic component of 
x[k], xh[k] is the sum of the 2nd and higher harmonic 
components of x[k]. From [7], we know that as long as ∆ is 
non-zero, which means the data record length is not exactly 
an integer number of signal periods,  the DFT algorithm 
introduces an error term (skirt term) in the Fourier transform 
of the fundamental component. This leakage term can be so 
large that it completely inundates the harmonic distortion 
components, making it impossible to correctly test the true 
spectrum of the signal. In order to estimate and remove the 
skirt term from the DFT spectrum, the concept of 
fundamental identification and replacement was first 
introduced in [7]. In this method, the amplitude, frequency 
and phase of the fundamental harmonic component are 
estimated firstly. Then the noncoherent fundamental 
harmonic component was replaced by a sine component that 
has the same amplitude and phase but a slightly modified 
frequency so that it becomes coherent with the sampling 
clock.  After that the standard FFT spectral analysis is done 
as usual. 

Unfortunately, the method in [7] has two shortcomings. 
The first one is that it is occasionally computationally 
unefficient. The method in [7] chooses the best data record 
length M by searching samples from M0 to 2M0. As we all 
know, the algorithm of FFT is efficient and requires 
O(MlogM) operations if M has small factors, the algorithm 
of  FFT will require O(M

2
) operations if M is a prime 

number.  In order to avoiding the unlikely case that M is a 
prime number, we choose the best data record length M 
having only prime factors of 2 or 3, the two smallest prime 
numbers. Furthermore, the pairs far away from zero, such as 

the pair whose absolute values are larger than / 2A , are 

used to select the best data record length M so that the effects 
of noise can be reduced greatly. For example, search through 

M1, M2, ……, Mi, …… (Mi’s factors comprise only 2 or 3) 

points, to find the (1+Mi)th data points that most closely 
matches the 1st point in the data sequence. That is, x[1] 
through x[Mi+1] most closely match an integer number of 
signal periods. Then Mi is the best data record length. 
Therefore, the proposed method would be computationally 
more efficient than the method in [7].  

After choosing the best data record length M, we still use 
the positive zero-crossing point as the starting point of the 
data record. For instance, in the data record from x[1] to 
x[M], x[1] is the positive zero-crossing point. By doing so, θ 
will be approximately 0 and the errors in estimating θ will 
have less effects. 

The second one is that it is vulnerable when the signal 
frequency is near ADC’s Nyquist frequency. The reason may 
be that the method in [7] doesn’t count the integer cycles of 
input signal correctly when the signal frequency is high. 
Therefore, a new accurate method for counting the integer 
cycles of input signal is applied in the improved fundamental 
identification and replacement technique. 

The new method for counting the integer cycles Jint in the 
data sequence from x[1] to x[M] is introduced as follows 
(here we call method I).  

a) Let  

     y[k]=1 if [ ] / 2x k A≥ , 

      y[k]=-1 if [ ] / 2x k A≤ − ,  

      y[k]=0 if / 2 [ ] / 2A x k A< <  

             then  get a new sequence y[k] ( by doing this, the 

             effects   of noise can be reduced greatly ). 

b) In the sequence y[k], if the adjacent elements are  

       the same, choose only one element, then get a new  

       sequence  w[k]. 

c) Define the variable c 

– If for all k, we have w[k]=w[k+4], then let c=0 

indicating f
in

 ≤f
s
/4. 

– If there is at least one k with w[k]≠w[k+4],  

then let c=1 indicating  f
in

 >f
s
/4 .  

d) Let [ ] [ ]z k y k= , then get the new sequence z[k]. 
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e) In the sequence z[k], if the adjacent elements are  

       the same, choose only one element, then get a new  

       sequence  zz[k]. 

f) Count the sum  sum(zz) of the non-zreo elements  in   

               sequence zz[k], 

g) Compute the integer cycles Jint 

       Jint=floor(sum(zz)/2) if c=0 

       Jint=M/2-floor(sum(zz)/2) if c=1. 

 

The algorithm (in step c) determining whether the signal 

frequency is larger than / 4
s

f  or not can be easily verified 

by pigeonhole principle. Because of page limitation, we 
won’t discuss it in this paper. 

It should be pointed out that this method for counting the 
integer cycles is not robust when fin is close to fs/4. In this 
case,  the step size of x[k]’s phase is close to π/2. Because of 
the noise, y[k]’s value is not accurate when x[k] is close to 

/ 2A  or / 2A− . Therefore, when fin is close to fs/4, we 

use another method to count the integer cycles of input signal 
(Here we call it method II ). 

After method I is executed, we get Jint, if 

int20% 30%
J

M
< < , we use method II to recount Jint.  

Because of page limitation, we cannot discuss method II in 
detail. Method II use the nature of sine wave, rising and 
falling, to count the integer cycles of input signal. Method II 
is extremely robust if fin is close to fs/4. 

The procedure of the improved fundamental 
identification and replacement technique can be outlined in 
following  11 steps. 

1) Capture  a sufficient number of samples, 

2) Find the first point x[k1] whose absolute value is 

larger than / 2A , 

3) choose the best data record length M. compare 

x[k1] with x[M1+k1], x[M2+k1], 

x[M3+k1], ……,x[Mi+k1], ……x[MN+k1]  (Mi has 

only prime factors of 2 or 3, MN is close to the 

length of original data record ), to find the point 

x[Mi+k1] that most matches x[k1] in the data 

sequence. Then Mi is just the best data record 

length M. 

4)  count the integer cycles Jint of the sequence from 

x[k1] to x[k1+M-1] using method I, 

5) If int20% 30%
J

M
< < , recount Jint using method II, 

6) Find the positive zero-crossing point x[k2] near 

x[k1], use all the data points between x[k2] and 

x[k2+M-1] as the data record. 

7) normalize the data record using the power-based 

normalization, and get the first estimate of the 

fundamental harmonic magnitude 0A
�

. 

8) Compute the fractional cycle 
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   And use least square method to identify A0cos(θ) and  
A0sin(θ). 

10) Perform the fundamental component replacement 
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The new data [ ]x k
�

 is generated by replacing the 

fundamental component from the original data (which is 
sampled noncoherently and causes possibly large skirts) with 
one that is coherent with the sampling clock. This is done by 
simply subtracting a sine component with the identified 
parameters and adding a sine component with the same A0 
and θ but with ∆ being rounded to zero. 

11) Perform FFT analysis on [ ]x k
�

 as usual. 

The improved method use the data record length M that 
has only prime factors of 2 or 3,  the two smallest prime 
numbers. This guarantees that the new method is always 
computational efficient. Furthermore, the new algorithm for 
counting the integer cycles of input signal makes the 
improved method more robust and more immune to noise. It 
works well when the signal frequency is close to Nyquist 
frequency. Therefore, the improved method is robust and 
immune to noise. 

III. SIMUALTION RESULT 

Extensive simulation study and experimental study have 
been conducted in order to verify the performance of the 
proposed algorithm. During the simulations, ADC is 
modeled as a set of transition levels.  Its nonlinearity error is 
chosen to be a Gaussian random variable with zero mean and 
standard deviation σDNL. In this section we present the 
spectral testing example of 12-bit ADC with σDNL of 0.02 
LSB. Additive noise of input signal is also chosen to be a 
Gaussian random variable with zero mean and standard 
deviation of 0.25 LSB. 

For comparison, three different spectral testing methods 
are simulated. They are: 1) straightforward application of 
DFT assuming periodic sampled sequence, 2) the proposed 
method,  3) perfect coherent sampling. 
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Figure 1  Data samples from coherent and noncoherent sampling 

 

     
          Figure 2  Straightforward application DFT  to the noncoherent data 

samples 

 
A time domain illustration of the coherent and 

noncoherent data is shown in Fig.1. Fig.2 shows the 
spectrum of straightforward application DFT to the 
noncoherent data samples. From Fig.2, we can see that there 
are large “skirt” around the spectral line. So straightforward 
application of DFT suffered from large errors due to non-
coherency. The spectrum of the noncoherent dada samples 
using the proposed method and the spectrum from perfect 
coherent sampling data are shown in Fig.3 and Fig.4 
respectively. From Fig.3 and Fig.4 we see that both 
spectrums show zero or minimal skirts.  

Therefore, the simulation results show that the proposed 
method can achieve spectral testing accuracies similar to 
those obtained with perfect coherent sampling. 

IV. EXPERIMENTAL RESULT 

Since the proposed method exhibited excellent spectral 
performance, we want to validate the algorithms with 
experimental data. Fig.5 shows the segment of captured 
noncoherent data in time domain. The data is collected in an 
industry setting and the original data record length is 524288. 

To analyze the spectral contents of the signal, one can 
straight forwardly apply DFT to the raw data. The resultant 
spectrum is shown in Fig.6. A small zoomed-in piece is 
shown on Fig.7.  From Fig.7 we can see there are a large 
“skirt” around the spectral line. So the spectral leakage is 
serious. Fig. 8 shows the spectrum of the noncoherent data 
samples using the proposed method. A small zoomed-in  

 

Figure 3  Spectrum of the noncoherent data samples using the               
proposed method  

 

Figure 4  Spectrum from perfect coherent sampling 

 
TABLE I.  ENOB,  TIME AND M USING DIFFERENT METHODS 

Methods ENOB Time (s) M 

Original method 8.13 177.67 
383169  
=3*337*379 

Proposed method 8.15 2.21 
279936 
=2

7
*3

7
 

 
piece is shown on Fig.9.  From Fig.9, we can see that there 
are no “skirt” in the spectrum. 

In order to test the performance of the proposed method, 
we also conduct the spectral analysis using the original 
method in [7]. Table I summarizes the ENOB, run time, and 
the best data record length M  of both methods. From Table I 
we can see that the spectral testing accuracies of both 
methods are similar. However, the proposed method is 
significantly faster than the original method.  The reason is 
that the best data record length M of original method has 
large prime factors, 337 and 339.  

Therefore, the experimental results show that the 
proposed method is faster and robust. 
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Figure 5  Raw data of noncoherent samples 

 
Figure 6  Spectrum by standard application of DFT 

 
Figure 7  A zoomed-in piece showing  the skirting 

 

V. STATISTICAL PERFORMANCE STUDY 

Statistical performance study is conducted in order to 
verify the performance of the proposed method. The 
simulation environment in Matlab is set up so that many 
parameters are randomly generated. The input signal 
frequency is generated by selecting a random ratio of fin to fs. 
The distorted sine wave signal is generated by adding 
random amount of harmonic distortion components to a pure 
sine wave. Additive measurement noise which is chosen to 
be Gaussian random variable is introduced at the input node 
of ADC with a standard deviation of around 0.25 LSB.  

 

Figure 8  Spectrum of the noncoherent data samples using the               
proposed method 

 

Figure 9  A zoomed-in piece showing no skirting 

 
During the simulations, we avoid using the certain signal and 

clock frequency combinations if the ratio /
in s

f f  can be 

reduced to a rational number with small integers. 
Furthermore, we also avoid using extremely low frequencies. 
The reason has been explained in [7]. 

Simulation of 1000 cases was conducted. Fig.10 and 
Fig.11 illustrate the signal SFDR testing errors and THD 
testing errors using the proposed method respectively. Notice 
that in all 1000 runs, the SFDR testing errors and THD 
testing errors are within 3.4± dB and 0.6±  dB respectively. 

We also notice that SFDR testing errors and THD testing 
errors are small when the signal frequency is close to 
Nyquist frequency. Therefore the proposed method is 
demonstrated to be robust and immune to noise. Table II 
summarizes the statistics of these comparative study results.  

Fig.12 shows the time in 100 runs using the proposed 
method and the original method in [7] respectively. From 
Fig.12 we can see that the proposed method is always faster 
and sometimes significantly faster than the original method. 
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          Figure 10 SFDR testing errors in 1000 runs using the proposed 

method, vs fin/fs*100 

 
          Figure 11 THD  testing errors in 1000 runs using the proposed 

method, vs fin/fs*100 

 
TABLE II.  SFDR AND THD TESTING ERRORS IN 1000 RUNS USING 

PROPOSED METHOD 

 SFDR errors (dB) THD errors (dB) 

max 3.35 0.40 

min -0.83 -0.58 

mean 0.29 -0.15 

std 0.42 0.17 

 

VI. CONCLUSIONS 

An improved method for faster and accurate spectral 
testing is proposed that does not require coherent sampling 
or the using of windowing. The new method uses the best 
data record length that has only prime factors of 2 or 3, the 
smallest prime numbers. This guarantees that the new 
method is always computational efficient. Because of this, 
the new method is always faster and sometimes it can be 
significantly faster than the original method. The paper also 
introduces a new algorithm for counting the signal periods in 
the data which make the proposed method is more robust and  

 
          Figure 12 Time in 100 runs using the proposed method and original 

method respectively, vs the best data record M 

 
more immune to noise.  Simulation and experimental results,  
statistical analysis validate this proposed method.  
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