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Abstract 

Linearity test and spectral test are two main contributors of 

ADC test cost which includes data acquisition time and 

accurate instrumentation. This paper presents a new method 

for estimating an ADC’s spectral performance from its 

tested INL data. The method does not require additional 

dedicated test circuitry or data acquisition. The results from 

INL test are used to compute harmonic distortions and other 

spectral specifications of the ADC. Memory and 

computation requirements are very small comparing to 

those in traditional spectral testing. When combined with a 

BIST approach for INL testing, the proposed method offers 

a very low cost BIST solution to ADC spectral testing. Both 

simulation and experimental results show that the proposed 

method can estimate THD and SFDR values accurately. 

 

 

1. Introduction 

As more mixed-signal functions are deeply embedded in 
System on Chip (SoC) applications and as customers 
demand higher performance, accurate and cost-effective 
testing of ADCs becomes significantly more challenging. In 
production test, ADC static linearity and spectral 
performance are the two categories of specifications that are 
most time consuming and impose most stringent hardware 
and software test requirements. Static linearity, including 
INL and DNL, is conventionally tested using the histogram 
method with either a sine wave or triangular wave input. 
Spectral performance, including SNR, THD, and SFDR, is 
tested using the FFT method with a sine wave input having 
very high spectral purity [1].  

To reduce test time, methods have been introduced for 
estimating ADC static linearity from spectral testing results 
[2, 3]. However, due to the loss of “high-frequency” details 
of ADC’s transition levels, these methods are unacceptable 
in real applications in which transition levels matter. For 
example, in measurement instrumentation, automotive 
control, and high resolution imaging, INL performance is 
critical and must be measured accurately. This paper takes 
another direction to achieve test time reduction by trying to 
estimate spectral performance based on INL test results. 
One might argue that saving spectral test time is not as big a 
saving as saving linearity test time. But when accurate 

linearity test is mandated by the application, saving spectral 
test time is the best one can hope for. When accurate 
spectral testing results are needed, both data acquisition time 
and computation time in traditional methods are significant.  
Furthermore, the stringent spectral purity requirement on the 
input sine wave generator is a major challenge, especially 
for on-chip built-in self test. Removing this challenge is a 
giant step toward enabling built-in self test of deeply 
embedded ADCs.  

The idea of estimating the spectral performance using 
linearity test data becomes more valuable in applications of 
ADC built-in self-test (BIST), where testing circuitry’s area 
is more concerned than test time. Significant research results 
of ADC BIST have been published in literature over the last 
two decades. BIST schemes of SNR and other frequency 
specifications testing were presented in [4, 5]. Low cost 
BIST schemes of testing static performances have been 
presented in [6, 7]. Recently, research results have been 
published on reducing the accuracy requirement on linearity 
testing signal and simplifying its generation circuitry, which 
makes it possible to realize ADC linearity test on chip [8]-
[10]. Using the method developed in this paper, it takes very 
little additional resources to obtain the spectral performance 
of an ADC based on BIST results of its linearity. This 
method eliminates the need of accurate sine wave 
generation on chip for spectral testing, making ADC BIST 
one step easier to implement. 

In this paper, a method of estimating THD and SFDR 
based on INL of an ADC is introduced. The method 
computes THD and SFDR without requiring any additional 
hardware or data acquisition. Only a small amount of 
computation is required to estimate THD and SFDR 
accurately. The rest of this paper is organized as following. 
In Section 2, the traditional method of testing THD and 
SFDR and its challenges are reviewed. In Section 3, the new 
method is described in detail. First a model of ADC test is 
presented. Then how distortion is extracted from INL data is 
presented. A way of efficiently compute harmonic power is 
present at the end. Error analysis is given in Section 4. 
Section 5 and Section 6 gives simulation results and 
measurement results respectively. 

2. Existing Challenges 

In traditional ADC spectral performance testing, a pure, 
sine wave with large amplitude is used as input signal of the  
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Fig.1. Spectrum of output signal 
 
ADC under test [11, 12]. The frequency is set to satisfy 
coherent sampling condition, which usually leads to odd 
number of signal periods. M sampling points from the input 
signal are converted into digital binary codes by the ADC. 
DFT of these digital codes are computed, the magnitude 
spectrum of which looks like what is shown in Fig.1. From 
the magnitude spectrum, THD and SFDR can be computed 
as following.  
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In above equations, H is the number of harmonics to be 
computed, hmi is the magnitude of the component at the ith 
harmonic of DFT, Arms is the RMS value of input sine wave 
amplitude. 

Two conditions must be satisfied in traditional spectral 
testing to achieve valid testing. The first condition is that the 
sine wave must be pure enough so that its distortion is much 
lower than ADC resolution under test. The second condition 
is input signal frequency must be well controlled to achieve 
coherent sampling. To make the sine wave pure enough, a 
low pass or band pass filter is usually put after the sine wave 
generator. Harmonics of the input sine wave must be 
attenuated to be much lower than ADC resolution. At board 
level testing, a passive LC filter can be used to perform this 
function [13]. LC filter shall not be implemented on chip 
since it consumes large area. Even building active filter for 
this purpose needs large area which can be shown by the 
following example. Assume the input frequency is f0, the 
harmonic at frequency fh needs to be attenuated by R dB. 
The order of the Butterworth lowpass filter is given by the 
following expression. 
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Assume the 2nd order harmonic of generated sine wave is 
50dB lower than fundamental. If we want to attenuate it by 
40dB so that the 2nd order harmonic is 90dB lower than 

fundamental, a 7th order lowpass filter will be needed. 
Building 7 poles at low frequency on chip consumes large 
area and hence is not practical. 

To meet the second condition, the number of input signal 
periods must be a coprime number of the total number of 
sampling points. The relation between input sine wave 
frequency and ADC sampling frequency is given by (4). 
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P is the number of input signal periods, M is the total 
number of points will be sampled, and fs is the sampling 
frequency of ADC. The value of M is usually a power of 2. 
P is usually chosen to be an odd integer to guarantee integer 
number of periods is sampled and different phase of each 
period is sampled. The coprime relation makes f0 be a 
fractional frequency of fs. For example, when fs is 10M Hz, 
M is 8192, and P is 799, the input signal frequency is 
975.342K Hz. A frequency synthesizer is used in traditional 
testing to generate the fractional frequency [11]. Frequency 
synthesizer design itself is a challenging task in current 
SOC design. This block also consumes large area thus is 
unaffordable in ADC BIST. The high precision frequency 
requirement may be avoid by using window in DFT. But the 
windowing will increase the computation complexity. 

As described above, generating a pure sine wave on chip 
at proper frequency with low cost is very challenging and is 
unpractical for ADC BIST. A new method proposed in this 
paper avoids above challenges by estimating spectral 
performance from INL data which has been acquired in 
linearity test. INL can be tested on chip with low overhead 
by adopting SEIR method which only needs nonlinear 
triangular stimulus [8]. Estimating spectral performance 
from INL data does not need additional data acquisition and 
only needs very small amount computation. 

3. New Method of Estimating THD and SFDR 

In this section, a new method of estimating harmonic 
distortion power and then THD and SFDR values is 
presented. THD and SFDR are computed from existing INL 
data without additional data acquisition. Digital circuitry 
needed for this computation is available in SoC. In other 
word, THD and SFDR can be estimated with almost no 
extra overhead. Another advantage of this approach is that 
noise in INL is much lower than normal ADC output codes 
because of average effect of histogram testing.  

The new method estimates THD and SFDR from tested 
INL data. Because of the static characteristic of INL, 
estimated THD and SFDR are pseudo static. This method 
cannot capture spectral performance at high frequency or 
spurious not at harmonic frequencies. 

A new way of modeling ADC testing process is given at 
first. Secondly, how the harmonic distortion power is 
extracted from INL data and calculated is discussed. At last, 
efficient computation is presented. 
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3.1. Model of ADC testing 

When a sine wave is converted into digital codes by an 
ADC, transfer characteristic of the ADC can be represented 
by equation (5). 
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In this equation, tk is the testing time index, Vin(tk) is voltage 
of input sine wave at time tk, n(tk) is the input referred noise 
including ADC noise and signal source noise, C(tk) is the 
output code at time tk, TC(tk) is the transition voltage 
corresponding to output C(tk), Q(tk) is the quantization error 
at time tk, Eos is the offset, and Eg is the gain error of the 
ADC. Continuous input sine wave is represented by discrete 
transition voltages of the ADC plus error and noise. The 
transition voltage corresponding to output code C(tk) can be 
expressed by equation (6) 

 

( ) ( )( )
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in which, INLC(tk) is the INL error of transition level TC(tk). 
Equation (7) can be obtained by substituting (6) into (5) 
and switching sides. 
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C(tk)·LSB is the output data of ADC. All values of C(tk)·LSB 
over the testing time 0≤ tk ≤1 represents the input signal 
which is a single tone sine wave.  

After Fourier transform, equation (7) becomes to 
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In this equation, FT(C(tk)·LSB) is the Fourier transform of 
ADC output codes which is the key data in traditional FFT 
testing. FT(C(tk)·LSB) consists of several components that 

are shown at the right side of (8). ( )( )
in k

FT V t  is the Fourier 

transform of input sine wave, FT(n(tk)-Q(tk)) is the noise 

floor, ( )( )kC tFT INL LSB⋅  is the harmonic distortion caused 

by nonideality of ADC, and ( )os LSBFT E ⋅  is the part DC 

component from ADC offset. Fig.1 shows a typical 
spectrum of a digitized sine wave contains all components 
in equation (8). Signal power, harmonic distortion power, 
and noise power can be computed from the spectrum and 
eventually SNR, THD, and SFDR can be computed. 

It can be observed from equation (8) that all harmonic 

distortion power is carried by ( )( )kC tFT INL  term which also  
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Fig.2. Sinusoidal sampling of INL 

 
contains a small amount of noise and a small part of input 
signal. Spectrum of INL data contains the same harmonic 
distortion power as the spectrum of digital output data 
shown in Fig.1. To achieve the purpose of computing THD 
and SFDR value, we only need to do Fourier transform of 
INL instead of output codes. All harmonics distortion power 
can be calculated from spectrum of INL.  

3.2. Extracting distortion power from INL 

In traditional spectral testing, a pure sine wave is applied 
to ADC. Distortion information carried by output code is the 
distortion experienced by the sine wave, which means that 

the distortion term ( )( )kC tFT INL  in equation (8) is the INL 

experienced by the sine wave. To obtain INL corresponding 
to the input sine wave, we can sinusoidally sample INL by 
the ADC output codes of the sine wave. Regard the original 
INL data of the ADC as a series INLorig which has 2n-2 
elements as shown in (9). 

( ) 1,2,3, 2 2n

origINL i i = ⋅⋅⋅ −                (9) 

in which n is the resolution of ADC. Sampling process 
constructs a new series based on output codes and INLorig 

( )( )sin 1,2,3,orig kINL INL C t k M= = ⋅⋅⋅             (10) 

In (10), series INLsin is the distortion experienced by sine 
wave, C(tk) is the ADC output code of sine wave, M is the 
total number of points in sine wave test. The value of M can 
be either larger or smaller than 2n-2. Fig.2 shows the process 
of constructing a new data sequence by sinusoidally 
sampling INL according to output codes of ADC. The curve 
at the left side is the original INL, which is sampled by 
ADC output codes of sine wave. The new INL sequence 
experienced by the sine wave is shown at the bottom of 
Fig.2. The pattern of the new sequence consists of 6 repeats 
of original INL. But the total number of points of the new 
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sequence can much smaller than the number of points of 
original INL. From spectrum of this new INL sequence, we 
can calculate the spectral performance as following. 
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In above two equations, Ph(i) is the i
th harmonic power in 

the power spectrum of the new INL sequence INLsin. The 

power spectrum corresponds to the term ( )( )kC tFT INL LSB⋅  

in (8). This term also contains a part of input signal power 

Ph(1). P0 is the signal power corresponding to ( )( )
in k

FT V t  

term in (8). The numerator of (11) is the total power of first 
H order harmonics, and the denominator is the signal power. 

The difficulty of sinusoidal sampling is that ADC’s output 
code of sine wave is not available because only code density 
is recorded in histogram testing. To overcome this, we 
acquire the sinusoidal digital codes by virtually testing a 
sine wave. Assume a sine wave Xin has frequency of f0 and 
amplitude of 1. An ideal ADC with the same full scale range 
converts this sine wave into digital codes which can be 
simply calculated by 
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in which, N is the number of transition level of ADC, C(k) is 
the output code, and M is the total number of samples that 
will be used for spectral performance estimation. Now the 
value of C(k) can be used as the index to read the value of 
INL from the original INL data and construct a new data set 
INLvsin. Constructing a new data set from INL according to 
sine wave does not change distortion power. Frequency of 
the sine wave in (13) can be selected to be any value that 
makes computation convenient. Assume H is the number of 
harmonics will be calculated. In order to let the first H 
harmonics distribute within half sampling frequency, the 
sine wave frequency can be set as 
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The value of f0 should be slightly adjusted to achieve 
coherent sampling. From these ideal digital codes for sine 
wave, another new sequence of INL is constructed as  

( )( )vsin 1,2,3,origINL INL C k k M= = ⋅⋅⋅        (15) 

From the spectrum of INLvsin, we can calculate THD and 
SFDR as following. 
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where A is the full scale range of ADC. Equation (16) and 
(17) are computations carried out in the new method. 
Because there is no input signal component in spectrum of 
INL data, the signal power is theoretical full scale sine wave 
power. Every harmonic power can be calculated from the 
spectrum of INL data. 

3.3. Reducing computation requirement 

Though the Fourier transform of INL can be easily 
computed by on chip processer, the computation can be 
further simplified. To calculate THD and SFDR, we only 
need distortion power when full scale input signal is applied. 
Instead of implementing FFT algorithm on chip, discrete-
time Fourier series (DFS) of INL is computed as (18). 
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In which, x(n) is the value of L(n), X(k) is the kth coefficient 
of the Fourier series, M is the total number of points used in 
THD and SFDR estimation. The coefficient of the 
fundamental component is given by (19) 
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The relation between input signal frequency and sampling 
frequency is set beforehand, thus value of k1 is known. 
Coefficient of ith order harmonic can be calculated by (20) 
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There is no need to calculate fundamental component since 
it is not the power of input signal or part of distortion power. 
Only 19 coefficients need to be calculated for good 
estimation of THD and SFDR value. The frequency of input 
sine wave is selected by tester so that value of k1 and total 
number of points M are always known. Rewrite (20) in to 
(21) 

( ) ( ) ( )
1

1

0

1 M
n

i

n

X i k x n E
M

−

=

⋅ = ⋅∑                     (21) 

In which, 
 

1

2
j i k

M
i

E e
π

− ⋅ ⋅ ⋅

=                                   (22) 



Paper 23.3                                    INTERNATIONAL TEST CONFERENCE                                        5 

 

Instead of creating a look up table for exponential term, only 
the exponential value Ei needs to be stored on chip and used 
for DFS coefficient computation. In (21), there are n times 
of multiplication. When n is large, it can be expressed in 
binary form to reduce computation further. 

12

0 1 3 122 4 2n b b b b= + + + ⋅⋅ ⋅ +                      (23) 

The exponential term in (21) can be rewritten as 
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b b bn b
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Values of different power Ei can be stored in memory. The 
number of multiplications in exponential value computation 
is reduced to 13. 
 

4. Error analysis 

4.1. Approximations in equation derivation 

Comparing (16) and (17) with equation (11) and (12), 
we can see 2 approximations may cause estimation error in 
THD and SFDR value. The first approximation is using 
ideal sine wave to sample INL instead of real output codes, 
so that FT(INLvsin) will be slightly different from FT(INLsin). 
It can be seen from equation (13) that C(k) is different from 
the actual output code of ADC C(tk). For reasonably good 
ADC, C(k) is only several codes away from C(tk) and the 
value of INL changes very slowly. The difference between 
INLsin and INLsin will never be larger than the peak-to-peak 
value of INL which we denote as ∆INL. INL consists of 
three parts including a part of input signal, distortion, and 
noise. So we can express INL as following. 
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in which h1 is the coefficient of fundamental component, h2 
and h3 are coefficients of 2nd and 3rd harmonic components, 
and p is the number of periods of sine wave. From (11) and 
(12) to (16) and (17), INLsin is replaced by INLvsin, so the 
coefficient of each harmonic will change. 
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higher order term noise+ +                   (26) 
 

in which h1 is the coefficient of fundamental component, 
h2 and h3 are coefficients of 2nd and 3rd harmonic 
components. Due to the difference between C(tk) and C(k), 
the value of INLvsin(k) is actually equal to the value of 
INLsin(k’), in which k’ is very close to k. Equation (26) can 
be rewritten as 
 

( ) ( )vsin sinINL k INL k ′=  
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higher order term noise+ +                   (27) 
 

Because k and k’ are very close to each other and frequency 
of harmonic is low, we can expand each harmonic term. 
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Comparing (27) and (28), we have 
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The ith harmonic power is calculated from the Fourier series 
coefficient at i·p. The estimation of the i

th order harmonic 
distortion power is 
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Assume difference between k and k’ is 5 LSB and M is 
8192, the estimation error of THD and SFDR values will be 
smaller than 0.025dB which is negligible. From above 
analysis, it causes negligible error by using ideal quantized 
sine wave to sample INL instead of real ADC output codes. 

The second approximation is using theoretical power of 
full scale sine wave as fundamental component power, 
which does not cause error either. In traditional spectral 
testing, in order to avoid clipping, the amplitude of sine 
wave is set to be smaller than ADC full scale range. THD 
and SFDR can still be computed correctly from the 
spectrum, but nonlinearity at two ends is not excited in this 
case. In this INL based new method, amplitude of the ideal 
sine wave used in INL sampling can be very close to full 
scale range so that A2/8 is the fundamental component 
power. In addition, all codes are hit and ADC nonlinearity is 
fully excited. 

4.2. Noise effect 

Input noise is another error source of spectral testing 
which exists in both traditional method and the new method. 
Assume the equivalent input noise is Pn, the noise floor in 
M points FFT spectrum is 

n
nfloor

P
P

M
=                                  (31) 

This noise causes error in every harmonic component. The 
actual kth harmonic component is 
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in which Xk is the true value of kth harmonic components, δXk 
is the error of kth harmonic component whose rms value is at 
noise floor level. And the power of this harmonic 
component is calculated as 
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The noise power floor also causes error in fundamental 
component, which is negligible since the ratio of signal 
power and noise power is very large. Error term in (33) 
causes error in SFDR value. 
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Since the error is analyzed base on ratio, error in THD is 
similar to the error term in (34). But H harmonic 
components will be added together, error of THD is smaller 
than error of SFDR. For a 16 bits ADC, assume the input 
equivalent noise is 0.5LSB which includes thermal and 
quantization noise. In M points FFT test, the SNR is about 
93dB and the noise floor is about -147dB for M equal to 215. 
Assume the SFDR is at 102dB level, noise may cause error 
within ±0.15dB. Fig.3 shows the boundary of error caused 
by noise when M changes from 28 to 215. It can be seen that 
when M decreases, noise causes more error in SFDR. 

5. Simulation Results 

The method of estimating THD and SFDR from INL 
data has been investigated and validated by simulations. 
Both traditional and the new method are implemented in 
Matlab. Comparing with results of traditional method, the 
new method provides comparable testing accuracy as 
traditional method. With no additional data acquisition and 
small amount of computation, the new method is more 
attractive in ADC BIST. 

A 16 bits ADC is modeled as a set of transition levels 
that are randomly generated in MATLAB. Fig.4.a shows the 
true INL of the ADC which is +1.1/-1.5LSB. Based on the 
INL data, the new method estimates THD and SFDR of the 
ADC. First, an ideal sine wave is quantized into a set of 
digital codes by an ideal 16-bit ADC as shown in equation 
(13). The total number of samples is 215 and the frequency is 
set to be a value so that the first 20 harmonic components 
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 (b) First 5 periods of sinusoidally sampled INL  

Fig.4. INL of ADC 
 

 
Fig.5. Spectrum of output code and sampled INL 

 

 
Fig.6. THD and SFDR difference between new method and 

traditional 32768 points FFT test 
 

are distributed within half sampling frequency. Secondly, 
the 215 digital codes are used as index to sample the INL to 
construct a new data set as shown in (15). The first 5 periods 
of the sinusoidally sampled INL is shown in Fig.4.b. 

Fig.5 compares the spectrum of ADC output codes in 
traditional spectral testing and the spectrum of sinusoidally 
sampled INL data. The black curve is the spectrum of 215 
digital output codes of the ADC when the input is a sine 
wave. For good investigation of harmonic distortion, input 
noise in traditional method is set to be zero so the SNR of 
this spectrum is 97.2dB which is very close to the 
theoretical SNR value of a 16 bits ADC. The gray curve is 
the spectrum of sinusoidally sampled INL data shown in 
Fig.4.b. Fundamental frequencies in two cases are set to be 
equal to each other for convenient comparison. From the 
gray curve, we can see three parts including small 
component at fundamental frequency, components at 
harmonic frequencies, and noise floor. It can be observed 
from this plot that spectrum of sinusoidally sampled INL 
has the same harmonic distortion power as the spectrum of 
digital output codes. The zoomed in plot around the 4th  
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(a) THD estimation results 
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(b) SFDR estimation 
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Fig.7. (c) THD and SFDR estimation errors 

 
harmonic frequency shows more details of this. From all 
these harmonic bins, total harmonic distortion power and 
maximum harmonic distortion power can be calculated. 
There is no real fundamental bin in the gray curve. When 
the INL is sinusoidally sampled, the sine wave amplitude is 
set to be full scale. Therefore, the signal power is simply 
A2/8 or -9dB. THD and SFDR values are computed based 
on total harmonic distortion power and maximum harmonic 
power. Another observation is the noise floor of INL 
spectrum is much lower than that of digital output code 
spectrum, which is an advantage of INL based estimation. 

In Fig.5, the number of samples of new method is 
chosen to be the same as traditional FFT method which is 
32768. Smaller number of points is enough in the new 
method to obtain good enough estimation results. THD and 
SFDR values tested from traditional 32768 points FFT 
method are -93.7dB and 100.2dB and considered as the 
reference values. Estimation results of the new method will  
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Fig.8. (b) Test error of INL 
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(a) Estimation error distribution of THD 
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(b) Estimation error distribution of SFDR 

Fig.9. Comparison of tradition and new method 
 
be compared with the reference and differences are regarded 
as estimation error. Fig.6 shows THD and SFDR estimation 
error of new method versus different number of points are 
used. The number of points in the new method changes from 
28 to 215. From this figure, it can be seen that larger number 
of points gives more accurate THD and SFDR estimation 
which agrees with Fig.3. When the number of points is 
larger than 1024, estimation errors of THD and SFDR are 
smaller than 0.02dB and 0.1dB respectively. 

To verify the new method for different ADCs, 64 ADCs 
with resolution 12 bits, 14 bits, and 16 bits and THD values 
from -69dB to -100.6dB are created and tested by both 
traditional 32768 points FFT method and 1024 points new 
method. Results of traditional method are considered as 
references as gray curves showing in Fig.7. From the plot, 
estimated THD and SFDR values track true values at all 
linearity level. From Fig.7.c, estimation error of THD is 
always smaller than 0.15dB, and most estimation errors of 
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SFDR are smaller than 0.3dB. Estimation error of SFDR is 
larger than that of THD. Overall, estimation errors of THD 
and SFDR are small. 

Above estimations are based on true INL of ADCs and 
have shown good accuracy. In real world, only tested INL 
can be used in the new method. Due to limited testing 
resources such as stimulus generator and number of hits per 
code, tested INL may have large amount of error. Fig.8.a 
shows the INL of the 16-bit ADC tested by using 32 hits per 
code histogram method. The linear input ramp used for 
testing contains 0.5LSB additive noise so that the tested INL 
is noisy comparing with the true INL curve shown in Fig.4.a. 
The test error can be as large as 0.4 LSB as shown in Fig.8.b 
even when the ramp is ideal. Due to testing limitations, INL 
is always different from test to test. 

To investigate how the INL test error affect the new 
method, 500 different ADCs are randomly generated and 
tested. THD and SFDR values measured by traditional 
32768 points FFT method with noise free pure sine wave 
are considered as true THD and SFDR. INL of these ADCs 
are tested by 32 hits per code histogram method with linear 
ramp. 0.5 LSB additive noise is added to the ramp so that 
tested INLs have similar error shown in Fig.8.b. Tested INL 
is sinusoidally sampled according to 1024 sine wave codes. 
These 1024 points are used in new method to estimate THD 
and SFDR of each ADC. Estimation error is the subtraction 
of new method results and true values. Fig.9 shows the 
distribution of 500 estimation errors. The traditional 32768 
points FFT method uses pure sine wave plus 0.5 LSB 
additive noise as input. Due to noise effect, result the 
traditional method differs from test to test. The distributions 
of traditional test results are shown below the new method. 
Mean of all distributions are zero, and 3σ values are very 
small. The THD and SFDR estimation error 3σ of the new 
method are 0.06 dB and 0.09dB larger than traditional 
method, which is insignificant. The number of points used 
in the new method is only 1024 which is much smaller than 
the number of points used in traditional method which is 215. 

 

6. Measurement Results 

The new method of estimating THD and SFDR from 
sinusoidally sampled INL has also been validated by 
measurement results. Based on tested INL data, the new 
method estimates THD and SFDR values with only simple 
computations. Accuracy of estimation results is comparable 
with that of traditional method which needs high quality 
sine wave as input and 32768 points FFT computation. 

Four different 16 bits SAR ADCs (ADC161S626) from 
National Semiconductor product line are tested by both 
traditional FFT method and the new method. The INLs are 
tested by 128 hits per code histogram method with sin wave 
input. THD and SFDR values of all ADCs are tested by 215 
points traditional FFT method in which sampling frequency 
is 250 KHz and input signal frequency is about 20KHz. 
Spectral performances measured by traditional method are  

Max = 0.95 LSB, Min = -0.53 LSB
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Fig.10. (b) Spectrum of ADC1 output code and INL 
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(a) INL of ADC4 
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Fig.11. (b) Spectrum of ADC4 output code and INL 

 
considered as the reference. Fig.10 to Fig.11 show test 
results of two ADCs including linearity and spectral testing. 
In the spectrum plots, black curves are obtained from 
traditional 215 points FFT method and the gray curves are 
obtained from FFT of sinusoidally sampled INL data. 
Spectrum plot of sinusoidally sampled INLs is obtained for 
comparison only. Only Fourier series coefficients of the first 
20 harmonic components are computed in the new method 
to estimate THD and SFDR values. Zoomed in plots of 
region around maximum harmonic frequency show that 
spectrum of sinusoidally sampled INL has the same 
harmonic bins as the spectrum of output codes. 
Performances of these four ADCs are listed in Table.1, in 
which SNR value varies from 91.36 dB to 92.23 dB, and 
INL varies from 0.9 LSB to 2 LSB. ADCs with various 
performances can provide better validation. 
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Table.1. Performance of four ADCs 

 ADC1 ADC2 ADC3 ADC4 

INL(LSB) +0.95/-0.54 +1/-1.27 +1.83/-1.83 +2.01/-1.98 

SNR(dB) 92.23 91.99 91.83 91.36 
 

Table.2. Estimation results of 1024 points new method (Unit: dB) 

 ADC1 ADC2 ADC3 ADC4 

THD_FFT -103.85 -97.60 -90.78 -91.29 

THD_new -104.8 -97.83 -90.85 -91.11 

∆(THD) -0.95 -0.23 -0.07 0.18 

∆(Pd) -119.06 -118.82 -124.95 -114.3 

SFDR_FFT 106.83 102.81 95.14 95.47 

SFDR_new 106.92 102.48 95.66 95.49 

∆(SFDR) 0.09 -0.33 0.52 0.02 

∆(Ph_max) -144.69 -121.72 -114.67 -121.49 

 
Table.2 shows estimation results of the new method with 

1024 points sinusoidally sampled INL data. The 2nd row and 
6th row lists THD and SFDR values of these ADCs tested by 
traditional 215 points FFT method. The 3rd row and 7th row 
lists THD and SFDR values of these ADCs tested by the 
new method with 210 points sinusoidally sampled INL. The 
4th row is the direct subtraction of THD values tested by the 
new method and THD values tested by traditional FFT 
method. The 8th row is the direct subtraction of SFDR 
values tested by the new method and THD values tested by 
traditional FFT method. All differences are very small, 
which means very good estimation accuracy can be 
achieved by the new method with a number samples that is 
much smaller than traditional FFT method.  

It can be noticed that THD value difference of ADC1 is 
larger than others in row 4 which is misleading. Direct 
subtraction of THD or SFDR value gives ratio of estimation 
error to distortion power. Absolute distortion power also 
affects the subtraction result. For example, when the true 
value and estimated value of a quantity Q1 are -103 dB and 
-102 dB, the direct subtraction value ∆Q1 is 1dB. The 
estimation error e1 is 1.3×10-11 or -108.9dB. Another similar 
case is the true value and estimated value of a quantity Q2 
are -97dB and -96dB, the direct subtraction value ∆Q2 is 
also 1dB. But the estimation error e2 is 5.2×10-11 or -102.9 
dB which is 4 times larger than e1.  

Therefore, comparing estimated distortion power which 
is shown in the 5th row provides more reasonable way of 
judging estimation accuracy. Estimation errors of distortion 
power of all ADCs are at the same level which is very small 
and comparable with noise effect. The noise floor of ADC1 
is -143.51dB, and the effect of total distortion power from 
noise is -125.95dB. Besides, noise floor in INL spectrum 
will also have effect on distortion power estimation, which 
will increase the effect up to about -123dB. Similar 
calculations of other ADCs give results at the same level. 
On the whole, Table.2 shows that the new method gives 
good enough estimation of THD and SFDR. 

 

Table.3. Bound of SFDR error due to noise in 32768 points FFT 
(Unit: dB) 

 ADC1 ADC2 ADC3 ADC4 

Ph_max -115.96 -111.95 -104.28 -104.61 

Noise floor -143.51 -143.27 -143.11 -142.64 

Error bound +1/-1.2 +0.68/-0.74 +0.3/-0.3 +0.32/-0.33 

 
Similar to Section 3.3, the error bounds of SFDR caused 

by noise are calculated for these four ADCs. The results are 
shown in Table.3. Error bounds are calculated base on the 
number of samples in FFT, the noise floor, and the 
maximum harmonic components that are obtained from FFT 
spectrum. Comparing the last row of Table.3 with the 
estimation errors in Table.2, it can be seen that estimation 
errors of all ADCs are well within the boundaries. It is 
necessary to notice that this method can only provides 
accurate estimation of spectral performance at low 
frequency due to the pseudo static feature of INL.  

 

7. Conclusion 

A new method has been introduced to estimate ADC 
THD and SFDR values from INL test results. In the 
circumstance of INL has been tested, this method requires 
only simple computations to estimate THD and SFDR. The 
new method avoids another round of data acquisition for 
spectral testing and additional dedicated circuitry. 
Simulation and experimental results show accuracy of the 
new method is comparable with traditional FFT method 
which needs high quality signal generator and FFT 
computation with large number of points. This method can 
only estimate spectral performance at low frequency and 
cannot identify SFDR when spur frequency is not harmonic 
frequency. 
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