
194 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

FOARS: FLUTE Based Obstacle-Avoiding
Rectilinear Steiner Tree Construction

Gaurav Ajwani, Member, IEEE, Chris Chu, and Wai-Kei Mak, Member, IEEE

Abstract—In this paper, we present an algorithm called
FOARS for obstacle-avoiding rectilinear Steiner minimal tree
(OARSMT) construction. FOARS applies a top-down approach
which first partitions the set of pins into several subsets un-
cluttered by obstacles. Then an obstacle-avoiding Steiner tree is
generated for each subset by an obstacle aware version of the
rectilinear Steiner minimal tree algorithm FLUTE. Finally, the
trees are merged and refined to form the OARSMT. To guide
the partitioning of pins, we propose a novel algorithm to construct
a linear-sized obstacle-avoiding spanning graph which guarantees
to contain a rectilinear minimum spanning tree if there is no
obstacle. Experimental results show that FOARS is among the
best algorithms in terms of both wirelength and runtime for
testcases both with and without obstacles.

Index Terms—Physical design, rectilinear Steiner minimal tree
(RSMT), routing, spanning graph.

I. Introduction

W ITH THE ADVENT of re-usability using intellectual
property (IP) sharing, the chip in today’s design is

completely packed with fixed blocks such as IP blocks,
macros, and so on. Routing of multi-terminal nets in the
presence of obstacles has become a quintessential part of the
design and has been studied by many (e.g., [1]–[13]). As
pointed out by Hwang [14], in the absence of obstacles multi-
terminal net routing corresponds to the rectilinear Steiner
minimal tree (RSMT) problem which is NP-complete. The
presence of obstacles in the region makes multi-terminal
routing problem even harder.

In this paper, we develop a new algorithm called FOARS for
OARSMT and RSMT generation by leveraging FLUTE [15].
FLUTE is a very fast and robust tool for RSMT generation.
It is widely used in many recent academic physical design
tools. FLUTE by its design cannot handle obstacles. A simple
strategy to generate an OARSMT would be to call FLUTE
once and legalize the edges intersecting with obstacles. Un-
fortunately, the OARSMT obtained can be far from optimal as

Manuscript received June 12, 2010; revised August 17, 2010; accepted
October 20, 2010. Date of current version January 19, 2011. This work was
supported in part by NSC, under Grant NSC 99-2220-E-0007-007. This paper
was recommended by Associate Editor Y.-W. Chang.

G. Ajwani is with Intel, Hillsboro, OR 97124 USA (e-mail:
gajwani@iastate.edu).

C. Chu is with the Department of Electrical and Computer Engineering,
Iowa State University, Ames, IA 50011 USA.

W.-K. Mak is with the Department of Computer Science, National Tsing
Hua University, Hsinchu 30013, Taiwan.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2010.2096571

its topology is based on an obstacle-oblivious Steiner tree. A
better strategy is to break the RSMT produced by FLUTE on
edges overlapping with obstacles, recursively call FLUTE to
locally optimize the subtrees, and then combine all overlap-
free subtrees at the end. However, if the routing region is
severely cluttered with obstacles, the quality of the solution
produced will degrade because the RSMTs generated by
FLUTE may be excessively broken. To tackle this, we propose
a partitioning algorithm with a global view of the problem at
the top level to divide the problem into smaller uncluttered
instances. Even if there is no obstacle, when the number of
pins are more than several tens, the partitioning algorithm
can improve both the wirelength and runtime of FLUTE as it
works better than the greedy net breaking heuristics in FLUTE.

To guide the partitioning algorithm, we propose to use a
sparse spanning graph. In the presence of obstacles, this graph
will be an obstacle-avoiding spanning graph (OASG). An
OASG is used to capture the proximity information among
the pins and corners of obstacles, if any. Three categories of
graph were used to capture the proximity information during
OARSMT construction in the past. References [1], [3], [4],
and [10] all used the escape graph. Reference [9] utilized a
Delaunay triangulation based graph. Both the escape graph
and Delaunay triangulation based graph contain O(n2) edges,
where n is the total number of pins and obstacle corners.
References [2] and [5]–[8] are based on various forms of
obstacle-avoiding spanning graphs. Shen et al. [2] proposed
a form of OASG that only contains a linear number of
edges which is also adopted in [5]. Later Lin et al. [6]
proposed adding missing “essential edges” to Shen’s OASG.
Unfortunately, it increases the number of edges to O(n2)
in the worst case (O(n log n) in practice) and hence the
time complexity of later steps of OARSMT construction is
increased to a large extent. In view of that, Long et al. [7],
[8] proposed a quadrant approach to generate an OASG with
a linear number of edges. But as we will see later, the OASG
generated by Long’s approach is not ideal. In this paper, we
present a novel octant approach to generate an O(n)-edge
OASG with more desirable properties.

Different from [2] and [6]–[8] which directly use an OASG
to construct an OARSMT, we only use an OASG to guide the
partitioning and construct our final OARSMT using FLUTE.
We note that a shortcoming of the former approach is that the
resulting OARSMT tends to follow obstacle boundaries and
makes detours toward obstacle corners. This makes it easier
to lead to congestion when routing many nets in a design.

0278-0070/$26.00 c© 2011 IEEE

AJWANI et al.: FOARS: FLUTE BASED OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION 195

(Adding essential edges as in [6] will help but will result in
O(n2) edges as an escape graph.) On the other hand, since
we only utilize the OASG to guide our partitioning and use
FLUTE for local optimization, the OARSMT thus constructed
will follow an obstacle boundary only when absolutely nec-
essary. In addition, the OASG generated by our proposed
octant approach has a linear number of edges like Long’s
[7], [8] and possesses other desirable properties not found
in Long’s OASG. For example, our OASG is guaranteed to
contain at least one rectilinear minimum spanning tree in the
absence of obstacle while Long’s OASG does not have such a
guarantee.

In this paper, we also propose an obstacle tree data structure
to accelerate the checking of overlap with obstacles. With the
aid of the obstacle tree data structure, the runtime of FOARS
is reduced by 59% as compared with [16].

Also, in this paper we would like to bring to notice that
in [16], we made a mistake in the run time analysis and
incorrectly claimed that the time complexity is O(n log n).
For some extreme cases, it can take O(n2) time. But our
experimental results indicate that it is extremely efficient for
all practical purposes.

We compared our results with the state-of-the-art OARSMT
and RSMT algorithms. Our results show that FOARS is
among the best in terms of both wirelength and runtime for
testcases both with and without obstacles and especially for
large testcases.

The rest of this paper is organized as follows. We first pro-
vide an overview of the main steps of our OARSMT construc-
tion approach in Section II. Each main step is described in de-
tail in Sections III–VII. The experimental results are reported
in Section VIII. Finally, we give our conclusion in Section IX.

II. Overview of FOARS

Our algorithm can be distinctly divided into the following
five stages.

1) Stage 1: OASG generation. First, we obtain the con-
nectivity information between the pins and obstacle
corner vertices using a novel octant OASG generation
algorithm. Section III describes the OASG algorithm in
detail.

2) Stage 2: OPMST generation. Based on the OASG, we
construct a minimum terminal spanning tree (MTST)
using the approach mentioned in [17] and then obtain
an obstacle penalized minimal spanning tree (OPMST)
from the MTST. Section IV talks about OPMST con-
struction in detail.

3) Stage 3: OAST generation. We partition the pin vertices
based on the OPMST constructed in the previous step.
After partitioning, we pass the subproblems to OA-
FLUTE which calls FLUTE recursively to construct an
obstacle-aware Steiner tree (OAST). Section V talks
about the partitioning and OA-FLUTE in more detail.

4) Stage 4: OARSMT generation. In this step, we rectilin-
earize the pin-to-pin connections avoiding obstacles to
construct an OARSMT. Section VI discusses OARSMT
construction.

Fig. 1. Demonstration of the major steps of FOARS using the benchmark
RC01. (a) OASG. (b) MTST. (c) OPMST. (d) OARSMT.

5) Stage 5: refinement. To further reduce the wirelength, we
perform V-shape refinement on the OARSMT. Details
for it can be found in Section VII.

Fig. 1 depicts the outputs after various stages of the algo-
rithm.

III. OASG Generation

A. Previous Approaches

We first define what we meant by an obstacle-avoiding
spanning graph.

Definition 1: Given an edge e(u, v) and an obstacle b, e is
completely blocked by b if every monotonic Manhattan path
connecting u and v intersects with a boundary of b.

Definition 2: Given a set of m pins and k obstacles, an
undirected graph G = (V, E) connecting all pin and corner
vertices is called an OASG if none of its edges is completely
blocked by an obstacle.

Although Definition 2 does not necessitate a linear number
of edges for an OASG, in order to have a fast runtime it is
desired to limit the solution space. In the past, there have been
a couple of efforts to construct an OASG with a linear number
of edges. Shen et al. [2] suggested a quadrant approach in
which each point can connect in four quadrants in the plane
formed by horizontal and vertical line going through the point.
Shen did not clearly explain their algorithm in the paper.

Long et al. [7] recently described an O(n log n)-time ap-
proach for OASG generation with a linear number of edges
by considering quadrant partition of the plane. They suggested
scanning along ±45° lines and maintaining an active vertex
list, a set of vertices in the graph which are not yet connected
to their nearest neighbor. After scanning any vertex v, they
searched for its nearest neighbor u in the active vertex list,
such that the edge (u, v) is not completely blocked by any
obstacle in the graph. This is followed by deletion of u from
the list and addition of v in the list.

We found that the OASG generation algorithm in [7] has a
few shortcomings. First in their algorithm, the nearest neighbor
for any vertex in a quadrant is contingent upon the direction
of scanning which means they have to scan along all four

196 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

Fig. 2. Octant partition for (a) a pin vertex and (b) an obstacle corner.

quadrants of a vertex in order to capture its connectivity
information. Second, in the absence of obstacles, their algo-
rithm cannot guarantee the presence of at least one minimum
spanning tree in their spanning graph. Third, their algorithm
cannot handle abutting obstacles due to minor mistakes in the
inequality conditions.

B. Our Approach for OASG

In [18], Zhou et al. proposed an elegant algorithm to
generate a spanning graph with a linear number of edges
guaranteed to contain a minimum rectilinear spanning tree
on an obstacle-free plane by considering octant partition of
the plane. So, we also propose an OASG algorithm based on
octant partition. Fig. 2(a) and (b) describes octant partition for
a pin vertex and an obstacle corner, respectively.

A property of octant partition is that a contour of equidistant
points from any point forms a line segment in each region. In
regions R1, R2, R5, R6, these segments are captured by an
equation of the form x + y = c for some constant c; in regions
R3, R4, R7, R8, they are described by the equation x − y = c

for some constant c. Now this property can be exploited when
we generate an obstacle-avoiding spanning graph.

The pseudocode for OASG generation for R1 is provided in
Fig. 3. As R1 and R2 both follow the same sweep sequence we
process them together in one pass. It is worth noting that it is
sufficient to sweep for R1, R2, R3, and R4 only. For any point,
we only need to sweep twice to determine its connectivity
information once for R1/R2 and once for R3/R4.

For octants R1 and R2, we sweep on a list of vertices in
V which contains both pins as well as obstacle corners with
respect to increasing (x +y). During sweeping we maintain an
active vertex list Aactive. An active vertex is a vertex whose
nearest neighbor in R1 still needs to be discovered.

For the currently scanned vertex v, while looking in R5 of
v we extract a subset S(v) from Aactive. Any node u in this
subset S(v) has v in R1 (lines 3–6). We connect v to its nearest
neighbor u∗ in S(v) for which, e(u∗, v) is not completely
blocked (line 7). After connecting with the nearest point we
delete all the points in S(v) from Aactive (line 8) and add v to
Aactive (line 18).

In order to determine if an edge is blocked by an obstacle,
we maintain two active obstacle boundary lists, Abottom for
the bottom boundaries and Aleft for the left boundaries. It is
evident that if an edge is blocked by an obstacle in R1, it will
intersect with either its bottom or its left boundary. Next, if

Fig. 3. Pseudocode for OASG generation algorithm.

Fig. 4. Any vertex within the lightly shaded triangle is completely blocked
by boundary (a, b).

our scanned vertex is the bottom left corner of an obstacle,
its bottom boundary is added to Abottom and its left boundary
is added to Aleft . It implies that both the left and the bottom
boundaries of that obstacle become active. When we come
across the top left (bottom right) corner, the corresponding
boundary is removed from Aleft (Abottom) implying that the
left (bottom) boundary for that obstacle becomes inactive at
that point (lines 12 and 15).

To explain lines 13 to 17, let us refer to Fig. 4 where vertex
b is the bottom right corner of an obstacle. It is easy to see that
if any vertex u lying within the 45–45–90 triangle shown is
still in Aactive after scanning b, it can be removed from Aactive.
Since in this case all vertices in R1 of u are completely blocked
from u by the obstacle.

We have the following lemma that relates our obstacle-
avoiding spanning graph generation algorithm to the obstacle-
free spanning graph generation algorithm in [18].

Lemma 1: The algorithm of Zhou et al. [18] is a special
case of our OASG generation algorithm.

AJWANI et al.: FOARS: FLUTE BASED OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION 197

Proof: If we consider an instance which has no obstacle,
then we can simply ignore the blockage check in line 7
and lines 9–17 from the algorithm in Fig. 3. The resulting
algorithm would be exactly the same as the spanning graph
generation algorithm in [18]. �

Corollary 2: In the absence of obstacle, our OASG gen-
eration algorithm generates a spanning graph that contains at
least one minimum rectilinear spanning tree of the given pins.

Proof: By Lemma 1, our OASG algorithm generates the
same result as the obstacle-free spanning graph generation
algorithm in [18] when there is no obstacle. Moreover, it
has been proved in [18] that the obstacle-free spanning graph
generated is guaranteed to contain at least one minimum
spanning tree of the given pins. �

C. An Efficient Implementation

In this section, we show how to efficiently perform the
following fundamental operations in the OASG generation
algorithm: 1) Given a vertex v, find the subset of points in
Aactive which have v in their R1; 2) given an edge, check if it
is completely blocked by any obstacle boundary in Abottom

or Aleft; and 3) given a bottom boundary of an obstacle,
find all points in Aactive which are completely blocked by the
boundary. We address these issues one by one in the following
paragraphs.

To find the subset of points in Aactive that have a given
point in their R1, we first state and prove two lemmas and a
corollary for our OASG generation algorithm. Similar ideas
have been outlined in [18].

Lemma 2: Point v is in the R1 region of point p if and only
if xp ≤ xv and xp − yp ≥ xv − yv.

Proof: By definition, the R1 region of p is the region to the
right of the vertical line passing through p and above the line
with slope = 1 passing through p (see Fig. 2). In other words,
point v is in the R1 region of p if and only if xp ≤ xv and
yv−yp

xv−xp
≥ 1. Rearranging the terms, the necessary and sufficient

condition is xp ≤ xv and xp − yp ≥ xv − yv. �

Lemma 3: At any time, no point in the active set can be in
the R1 region of another point in the set.

Proof: Before we add a new point v to the active set (line
18), we would delete all points in the active set that have v

in their R1 regions (line 8). In addition, any point already in
the active set cannot be in the R1 region of point v as we are
processing in increasing (x + y) order. Hence, no point in the
active set can be in the R1 region of another point in the set
at any time. �

Corollary 2: For any two points p and q in the active set,
we have xp �= xq, and if xp < xq then xp − yp ≤ xq − yq.

Proof: Assume points p and q are in the active set. Then we
cannot have xp = xq, otherwise p would be in the R1 region
of q or vice versa by Lemma 2 which contradicts Lemma 3.
And we cannot have xp < xq and xp −yp ≥ xq −yq, otherwise
q would be in the R1 region of p by Lemma 2 which again
contradicts Lemma 3. Hence, the corollary is proved. �

To facilitate finding the points in Aactive that have a given
point in their R1 regions, we keep the points in Aactive in
increasing order of their x-coordinate. To find the subset of
points which have v in their R1, we first find the largest x in

Aactive such that x ≤ xv. We then scan Aactive in decreasing
order of x until x − y < xv − yv. Note that by Corollary 2,
decreasing order of x automatically implies non-increasing
order of x − y. Any point in between has x ≤ xv and
x − y ≥ xv − yv, and hence has v in its R1 by Lemma 2.
We use a balanced binary search tree to implement Aactive in
order to have O(log n) query operation to find the largest x in
Aactive such that x ≤ xv.

An edge e(u, v) formed by points (xu, yu) and (xv, yv) is
completely blocked by a bottom obstacle boundary (a, b)
formed by the points (xa, yh) and (xb, yh), if and only if,
yu < yh < yv, xa < xu, and xb > xv. Note that at line 7,
all bottom boundaries satisfying the condition must be present
in the list Abottom. We use a balanced binary search tree data
structure for Abottom with the y-coordinate of a boundary as a
key value. If there are k bottom boundaries between yu and
yv, it takes O(log n + k) time to check if any of them blocks
edge e. Checking if an edge is completely blocked by a left
boundary can be done similarly.

To determine all the completely blocked vertices u in Aactive

by a horizontal boundary (a, b) in line 16, we need to check
if yu < yh, xa < xu and xu − yu + yh ≤ xb (the lightly shaded
region in Fig. 4). Since we already have Aactive as a sorted
list in increasing x we can check all points which lie between
xa and xb and test for the above conditions to see if they are
completely blocked.

In [16], we made a claim about runtime complexity of
the overall algorithm being O(n log n). It has been recently
brought to our attention that there may exist extreme cases
for which the total time spent by line 7 over all iterations is
O(n2). We concede with the argument but our algorithm is
extremely fast for all practical purposes as indicated by our
experimental results and it results in an OASG with a linear
number of edges which limits the solution space resulting in
better runtime complexity for subsequent stages.

IV. OPMST Generation

A. MTST Generation

After capturing the initial connectivity among pin vertices,
the next logical step is to extract a MTST from the OASG
that connects all pin vertices and avoid obstacles. Shen
et al. [2] and Lin et al. [6] both used an indirect approach
for this step. They first constructed a complete graph over all
pin vertices where the edge weight is the shortest path length
between the two pin vertices. On this complete graph they
used either Prim’s or Kruskal’s algorithm to obtain a MST.
Although it is effective, the approach described above seems
to be an overkill as it is unnecessary to construct a complete
graph when we already have OASG. Back in the 1980s, Wu
et al. [17] suggested a method using Dijkstra’s and Kruskal’s
algorithms on a graph similar to an OASG to obtain a MTST.
Recently, Long et al. [8] adopted their approach to solve the
problem on the OASG.

In this paper, we adopt the approach based on the extended
Dijkstra’s algorithm and the extended Kruskal’s algorithm as
defined in [8]. For every corner vertex in the OASG, we want
to connect it with the nearest pin vertex. This can be easily

198 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

done using Dijkstra’s shortest path algorithm considering every
pin vertex as a source. After running the extended Dijkstra’s
algorithm we are left with a forest of m terminal trees, m being
the number of pin vertices. The root of every terminal tree in
the forest obtained above is a pin vertex. In order to connect
all disjoint trees we use the extended Kruskal’s algorithm on
the forest. A priority queue Q is used to store the weights of
all possible edges termed as bridge edges in [8] which can be
used for linking the trees.

Definition 4 [8]: An edge e(u, v) is called a bridge edge if
its two end vertices belong to different terminal trees.

From Definition 4, it can be deduced that if each tree was
a single vertex in the graph then bridge edges will be the
edges connecting these vertices and we can use Kruskal’s
algorithm to obtain a MST in such a graph. The extended
Kruskal’s algorithm is simply an extended version of the
original Kruskal’s algorithm tailored to obtain a MST in a
forest. It is important to note that in case we do not have
any obstacle, the extended Dijkstra’s algorithm will not make
any change in the graph and the extended Kruskal will simply
work on a spanning graph.

B. OPMST Construction

We note that a sparse OASG does not always have direct
connections between the pin vertices even if one is allowed.
This is due to a neighboring corner vertex being nearer than
the other pin vertex in the same region. These indirect detour
paths are unnecessary and if not taken care of can lead to a
significant loss of quality. We note that the algorithm proposed
by [8] failed to address this issue. On the other hand, we
address this problem by constructing an OPMST from the
MTST by removing all the corner vertices and storing detour
information as the weight of an edge.

To construct an OPMST, we follow a simple strategy. For
any corner vertex v, we find the nearest neighboring pin vertex
u. We connect all the pin vertices originally connected with
v to u and delete v. We update their weights as their original
weight plus the weight of e(u, v). This method guarantees that
in case we have a major detour between two pin vertices due to
an obstacle, the weight of that edge will corroborate this fact.
In other words we can say that the edge would be penalized
for the obstacles in its path.

V. OAST Generation

This step differentiates our algorithm from [2] and [6]–
[8]. We exploit the extremely fast and efficient Steiner tree
generation capability of FLUTE [15] for low degree nets.
In order to embed FLUTE in our problem, we designed
an obstacle aware version of FLUTE, OA-FLUTE. As OA-
FLUTE is less effective for high degree nets and dense
obstacle region, we partition a high degree net into subnets
guided by the OPMST obtained from the previous step. The
subproblems obtained after partitioning are passed on to OA-
FLUTE for obstacle aware topology generation. It is termed
as obstacle-aware because the nodes of the tree are placed in
their appropriate locations considering obstacles around them.

Fig. 5. Pseudocode for the partition function.

Fig. 6. Example illustrating first criterion for partitioning.

Figs. 5 and 8 describe the pseudocodes for the Partition
and OA-FLUTE functions. It is evident that both functions are
recursive functions. Let us first explain the Partition function.

A. Partition

The input to the Partition function is an OPMST obtained
from the last step and the output is an OAST. An OAST is
a Steiner tree in which the Steiner nodes have been placed
considering the obstacles present in the routing region to
minimize the overall wirelength. The following two criteria
are set for partitioning pin vertices. The first criterion is to
determine if any edge is completely blocked by an obstacle.
The second criterion is to check if the size of OPMST is more
than the HIGH THRESHOLD defined.

As can be clearly seen in Fig. 6 that for an overlap free
solution, we have to route around the obstacle. Therefore, it
seems logical to break the tree at edge (u, v). We know that
OA-FLUTE can efficiently construct a tree when the number
of nodes is less than the HIGH THRESHOLD value. If the
size of the tree is still more than the HIGH THRESHOLD
after breaking at the blocking obstacles, we need to break the
tree further. In this case, we look for the edge with the largest
weight on the tree and delete that edge, refer to Fig. 7(a).

AJWANI et al.: FOARS: FLUTE BASED OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION 199

Fig. 7. Example illustrating second criterion for partitioning. (a) Partitioning.
(b) Local refinement.

Fig. 8. Pseudocode for the OA-FLUTE function.

Based on the above-mentioned criteria, if we break an
obstacle edge, we simply include corner vertices in the tree
and divide the two trees as shown in Fig. 7. Else, if we break
at the edge with largest weight, we delete that edge and make
sure that it does not contain any leaf of the tree as shown in
Fig. 7(a).

After breaking an edge, we make recursive calls to the
Partition function using two subtrees. When the size of the
tree becomes less than the HIGH THRESHOLD, we pass
the nodes of the tree to OA-FLUTE function. The OA-FLUTE
function returns an OAST. After returning from OA-FLUTE in
Partition, if the partition was performed on an obstacle edge,
we simply merge two Steiner trees using the same obstacle
edge. In case the partition was performed on the longest edge,
we explore an opportunity to further optimize wirelength. We
merge the two trees on the longest edge and then search the
region around the longest edge to extract neighboring pin ver-
tices, refer to lines 12–15 in Figs. 5 and 7(b). This refinement
is the same as the local refinement proposed in [15]. We pass
this set of nodes to OA-FLUTE for further optimization.

B. OA-FLUTE

The purpose of OA-FLUTE function is to form an OAST.
It begins by calling FLUTE on the set of input nodes. FLUTE

Fig. 9. OA-FLUTE: handling an edge completely blocked by an obstacle.
(a) Completely blocked edge. (b) Subtrees before merging. (c) Merging
excluding corners.

Fig. 10. OA-FLUTE: handling Steiner node falling on an obstacle. (a) Re-
moving longest segment. (b) Subtrees before merging. (c) Merging excluding
corners.

constructs a Steiner tree without considering obstacles. This
tree can have two kinds of overlap: 1) an edge completely
blocked by an obstacle, and 2) a Steiner node falling on any
obstacle. We handle both of these cases differently.

To handle the first case, refer to Fig. 9, we break the Steiner
tree into two subtrees including corner points of the obstacle
as in Fig. 9(b) and make recursive calls to OA-FLUTE. We
selectively prune the number of recursive calls based on the
size of the tree in order to strike a balance between run-time
and quality.

To handle the second case, we devised a special technique.
We pick an obstacle which has a Steiner node on top of it. For
every boundary of this obstacle intersecting with the Steiner
tree, we extract a set of nodes Ni which includes the pin
vertices in the tree near to that boundary. In Fig. 10(a), we
have a single Steiner node inside the obstacle intersecting at
a1, a2, and a3, with the right, top, and left boundary of the
obstacle, respectively. We extract three set of pin vertices N1,
N2, and N3 from the original Steiner tree for the right, top, and
left boundary, respectively. The points a1, a2, and a3 divide the
obstacle outline into three segments as shown in Fig. 10(a).
We then find the longest segment [the light shaded segment
(a3, a1) in Fig. 10(a)]. We then traverse from one endpoint of
the longest segment to the other endpoint via other segments in
an anti-clockwise direction, for example, from a1 to c1 to a2 to
c2 to a3 in Fig. 10(a). While moving along the other segments,
we keep adding corner vertices to the corresponding Ni’s, e.g.,

200 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

c1 gets added to both N1 and N2 and c2 gets added to both
N2 and N3 in Fig. 10(b). We then recursively call OA-FLUTE
for all Ni’s thus formed.

As our goal with OA-FLUTE is to determine befitting
locations for Steiner nodes we exclude all corner vertices when
we finally merge the subtrees. Figs. 9(c) and 10(c) show the
final Steiner trees after excluding corners while merging. The
reason for not adding corner vertices in this step is twofold.
First, it is not desirable to further restrict the solution when we
already did once in Partition function. Second, we want our
OA-FLUTE to be a generic function which can preserve the
number of pin-vertices provided to it, adding corner vertices
would increase them.

C. Fast Implementation with Obstacle Tree Data Structure

To create an OAST, OA-FLUTE performs two major tasks.
It tries to remove all completely blocked edges and removes
all Steiner nodes falling on any obstacle. In order to perform
these tasks, it requires to check each edge and Steiner node
of the tree against all obstacles if we use a naive list data
structure to represent the obstacles. Our experiments in [16]
were performed based upon this simple approach.

In this paper, we propose an efficient obstacle tree (OBTree)
data structure. An OBTree is a balanced binary tree in which
we bin obstacles in their enclosing regions. We start with
a region which encloses all obstacles. After that, depending
upon the dimensions of the region, we slice the region either
vertically or horizontally into two parts. After dividing the
region into two halves we create two similar problems as
before. We use recursion to further split these regions until
there is only one obstacle inside each bin.

Fig. 11 describes the pseudocode used by FOARS to create
an obstacle tree. The procedure CreateOBTree is provided with
a list of obstacles. In case the region enclosing the obstacles
has larger width than height, we divide the obstacles into
two parts based upon the x-coordinates of their bottom left
corners. Otherwise, the y-coordinates of bottom left corners
of obstacles are used.

OBTree is extremely efficient for searching if an edge is
completely blocked by any obstacle or if a Steiner node falls
on any obstacle. The pseudocodes in Figs. 12 and 13 are
recursive procedures to perform above-mentioned tasks.

VI. OARSMT Generation

The OAST obtained from last step does not guarantee
that rectilinear path for a pin-to-pin connection is obstacle
free. In this step, we rectilinearize every pin-to-pin connec-
tion avoiding obstacles to generate an OARSMT. For every
Manhattan connection between two pins we can have two
L-shape paths. On the basis of the obstacles inside the bound-
ing box formed by an edge, we can divide all the possible
scenarios into four categories: 1) both L-paths are clean; 2)
both L-paths are blocked by the same obstacle; 3) only one
L-path is blocked; and 4) both L-paths are blocked but not by
the same obstacle. We discuss these scenarios one by one in
the following paragraphs.

Fig. 11. Pseudocode for creating an OBTree.

Fig. 12. Pseudocode for checking if a Steiner node falls on any obstacle.

For the first case, even though we can rectilinearize using
any L-path, we instead create a slant edge at this stage to
leave the scope for improvement in V-shape refinement. For
the second case, we have no option but to go outside the
bounding box and pick the least possible detour.

For the third case, we route inside the bounding box,
since there exists a path. We break the edge into two sub
problems on the corner of an obstacle along the blocked
L-path. We recursively solve these sub problems to determine
an obstacle-avoiding path. If the wirelength of this path is the
same as the Manhattan distance between the pins, we accept
the solution, else we route along the unblocked L-path. It is
noteworthy that for this case we could have directly accepted

AJWANI et al.: FOARS: FLUTE BASED OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION 201

Fig. 13. Pseudocode for checking if an edge is completely blocked.

Fig. 14. V-shape refinement case and refined output.

the unblocked L-path. In order to create more slant edges,
and hence, further scope for V-shape refinement, we searched
for a route along the blocked L-path avoiding obstacles. For
the last case where both L-paths are blocked but not by the
same obstacle, we determine obstacle-avoiding routes using
the same recursive approach as mentioned above for both
L-paths and pick the shortest one.

VII. Refinement

We perform a final V-shape refinement to improve total
wirelength. This refinement includes movement of Steiner
node in order to discard extra segments produced due to
previous steps. The concept of refinement is similar to
the one that determines a Steiner node for any three terminals.
The coordinates of the Steiner node are the median value of the
x-coordinates and median value of the y-coordinates. Fig. 14
illustrates a potential case for V-shape refinement and output
after refinement. This refinement comes handy in improving
the overall wirelength by 1% to 2%.

VIII. Experimental Results

We implemented our algorithm in C. The experiments
were performed on a 3 GHz AMD Athlon 64 X2 Dual Core
machine. We requested binaries from Long et al. [8], Lin et al.
[6], Liang et al. [10], Liu et al. [11], [12], and ran them on our
platform. Five industrial testcases (IND1–IND05), 12 circuits
from [6] (RC01–RC12), five randomly generated benchmark
circuits (RT01–RT05) [6], and five large benchmark circuits
(RL01–RL05) generated by [8].

A. OARSMT Experimental Results

Tables I and II show wirelength and runtime comparison
on benchmarks containing obstacles. We determined exper-

TABLE I

Wirelength and Runtime Comparison Between FOARS [16] and

Current Results

Wirelength Runtime (s)
Benchmark m k FOARS [16] FOARS FOARS [16] FOARS
RC01 10 10 25 980 25 980 0.00 0.00
RC02 30 10 42 110 42 110 0.00 0.00
RC03 50 10 56 030 56 030 0.00 0.00
RC04 70 10 59 720 59 720 0.00 0.00
RC05 100 10 75 000 75 000 0.00 0.00
RC06 100 500 81 229 81 229 0.03 0.03
RC07 200 500 110 764 110 764 0.03 0.03
RC08 200 800 116 047 116 047 0.06 0.05
RC09 200 1000 115 593 115 593 0.08 0.06
RC10 500 100 168 280 168 280 0.02 0.02
RC11 1000 100 234 416 234 416 0.04 0.03
RC12 1000 10 000 756 998 756 998 2.04 1.19
RT01 10 500 2191 2191 0.01 0.00
RT02 50 500 48 156 48 156 0.02 0.02
RT03 100 500 8282 8282 0.03 0.03
RT04 100 1000 10 330 10 330 0.07 0.06
RT05 200 2000 54 598 54 634 0.21 0.15
IND1 10 32 604 604 0.00 0.00
IND2 10 43 9500 9500 0.00 0.00
IND3 10 59 600 600 0.00 0.00
IND4 25 79 1129 1129 0.00 0.00
IND5 33 71 1364 1364 0.00 0.00
RL01 5000 5000 483 027 483 027 3.13 1.15
RL02 10 000 500 637 753 637 753 1.36 1.18
RL03 10 000 100 640 902 640 902 1.15 1.13
RL04 10 000 10 697 125 697 125 1.55 1.57
RL05 10 000 0 728 438 728 670 1.66 0.12

(0.999) (1) 11.54(1.59) 7.23(1)

imentally that HIGH THRESHOLD value of 20 works the
best.

Table I shows our newest results as compared with results
published in [16]. Using OBTree in FOARS we were able
to cut down the runtime by 59% with negligible increase in
wirelength. The reason for the slight increase in wirelength is
that we decided to disable the refinement step for instances
with no obstacle (RL05 in Table I). Based on experiments,
we determine that if we remove the refinement step for
instances with no obstacles, we gain significantly in runtime
with negligible loss in quality (see Table III).

Columns 4 and 5 of Table II show that FOARS outperforms
Lin et al. [6] by 2.3% and Long et al. [8] by 2.7%. Columns
6–8 indicate that FOARS has similar wirelength results as
compared with Liang et al. [10] and Liu et al. [11], [12].
For the runtime in Table II, we are now 84% faster than Long
et al. [8] on average. We are 46 times faster than [10] and 123
times faster than [6]. Our runtime is slower as compared with
Liu et al. [11], [12].

B. RSMT Experimental Results

As mentioned before, RSMT can be seen as a special case
for OARSMT. In an effort to construct a single solution for
OARSMT and RSMT generation, we performed experiments
on our existing benchmarks after deleting obstacles. As shown
in Table III, we compare our results with Long et al. [8] and
Liang et al. [10]. We could not compare our results with
[11] and [12] as their binaries could not run on cases with
no obstacles. We also compared our results with FLUTE-2.5

202 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

TABLE II

Wirelength and Runtime Comparison

Wirelength Runtime (s)
Benchmark m k Lin [6] Long [8] Liang [10] Liu [11] Liu [12] FOARS Lin [6] Long [8] Liang [10] Liu [11] Liu [12] FOARS
RC01 10 10 27 790 26 120 25 980 26 740 26 040 25 980 0.00 0.00 0.01 0.00 0.00 0.00
RC02 30 10 42 240 41 630 42 010 42 070 41 570 42 110 0.00 0.00 0.02 0.00 0.00 0.00
RC03 50 10 56 140 55 010 54 390 54 550 54 620 56 030 0.00 0.00 0.00 0.00 0.00 0.00
RC04 70 10 60 800 59 250 59 740 59 390 59 860 59 720 0.00 0.00 0.01 0.00 0.00 0.00
RC05 100 10 76 760 76 240 74 650 75 440 74 770 75 000 0.00 0.00 0.01 0.00 0.00 0.00
RC06 100 500 84 193 85 976 81 607 81 903 81 854 81 229 0.10 0.08 0.50 0.01 0.02 0.03
RC07 200 500 114 173 116 450 111 542 111 752 110 851 110 764 0.18 0.09 0.60 0.01 0.03 0.03
RC08 200 800 120 492 122 390 115 931 118 349 116 132 116 047 0.31 0.15 1.16 0.02 0.04 0.05
RC09 200 1000 117 647 118 700 113 460 114 928 113 559 115 593 0.40 0.22 1.53 0.02 0.05 0.06
RC10 500 100 171 519 168 500 167 620 167 540 167 460 168 280 0.20 0.03 0.18 0.00 0.01 0.02
RC11 1000 100 237 794 234 650 235 283 234 097 236 018 234 416 0.74 0.06 0.83 0.01 0.02 0.03
RC12 1000 10 000 803 483 832 780 761 606 780 528 762 435 756 998 55.09 3.80 186.3 0.36 1.20 1.19
RT01 10 500 2289 2379 2231 2259 2193 2191 0.03 0.06 0.19 0.01 0.01 0.00
RT02 50 500 48 858 51 274 47 297 48 684 47 488 48 156 0.05 0.06 0.55 0.01 0.02 0.02
RT03 100 500 8508 8554 8187 8347 8231 8282 0.10 0.06 0.21 0.01 0.02 0.03
RT04 100 1000 10 459 10 534 9914 10 221 9893 10 330 0.22 0.23 0.37 0.02 0.04 0.06
RT05 200 2000 54 683 55 387 52 473 53 745 52 509 54 634 0.96 0.66 3.18 0.04 0.12 0.15
IND1 10 32 632 639 619 626 604 604 0.00 0.00 0.00 0.00 0.00 0.00
IND2 10 43 9700 10 000 9500 9700 9600 9500 0.00 0.00 0.00 0.00 0.00 0.00
IND3 10 59 632 623 600 600 600 600 0.00 0.00 0.00 0.00 0.00 0.00
IND4 25 79 1121 1130 1096 1095 1092 1129 0.00 0.00 0.00 0.00 0.00 0.00
IND5 33 71 1392 1379 1360 1364 1374 1364 0.00 0.00 0.00 0.00 0.00 0.00
RL01 5000 5000 492 865 491 855 481 813 483 134 483 199 483 027 106.66 3.58 27.14 0.27 0.63 1.15
RL02 10 000 500 648 508 638 487 638 439 636 097 640 435 637 753 159.09 1.27 29.45 0.23 0.37 1.18
RL03 10 000 100 652 241 641 769 642 380 640 266 644 276 640 902 153.95 1.08 23.35 0.22 0.32 1.13
RL04 10 000 10 709 904 697 595 699 502 696 111 700 937 697 125 195.25 0.97 22.00 0.24 0.29 1.57
RL05 10 000 0 741 697 728 585 730 857 − − 728 670 217.88 0.96 33.64 − − 0.12

891.25 13.36 331.235 1.48 3.19 7.23
Norm 1.024 1.027 0.995 1.004 0.994 1 123.26 1.84 45.81 0.20 0.44 1

m is the number of pin vertices and k is the number of obstacles. The values in the last row are normalized over our results for both wirelength as well as
runtime.

TABLE III

Wirelength and Runtime Comparison for Benchmark with No Obstacles, I.E. k = 0 for All Cases

Wirelength Runtime (s)
Benchmark m k Long [8] Liang [10] FLUTE-2.5 [15] Ours Long [8] Liang [10] FLUTE-2.5 [15] FOARS
RC01 10 0 25 290 25 290 25 290 25 290 0.00 0.00 0.00 0.00
RC02 30 0 40 100 40 630 39 920 39 920 0.00 0.00 0.00 0.00
RC03 50 0 52 560 52 440 53 400 53 050 0.00 0.00 0.00 0.00
RC04 70 0 55 850 55 720 57 020 55 380 0.00 0.00 0.00 0.00
RC05 100 0 72 820 71 820 73 370 72 170 0.00 0.00 0.00 0.00
RC06 100 0 77 886 78 068 80 057 77 633 0.00 0.00 0.00 0.00
RC07 200 0 106 591 107 236 109 232 106 581 0.01 0.07 0.00 0.00
RC08 200 0 109 625 109 059 112 787 108 928 0.00 0.03 0.00 0.00
RC09 200 0 109 105 108 101 112 460 108 106 0.01 0.02 0.00 0.00
RC10 500 0 164 940 164 450 170 270 164 130 0.02 0.17 0.00 0.00
RC11 1000 0 233 743 235 284 245 325 233 647 0.06 0.70 0.00 0.00
RC12 1000 0 755 332 764 956 798 742 755 354 0.04 0.75 0.00 0.00
RT01 10 0 1817 1817 1817 1817 0.01 0.00 0.00 0.00
RT02 50 0 44 930 46 109 45 291 44 416 0.00 0.00 0.00 0.00
RT03 100 0 7677 7777 7811 7749 0.00 0.00 0.00 0.00
RT04 100 0 7792 7826 7826 7792 0.00 0.00 0.00 0.00
RT05 200 0 43 335 43 586 44 809 43 026 0.00 0.00 0.00 0.00
IND1 10 0 614 619 604 604 0.00 0.00 0.00 0.00
IND2 10 0 9100 9100 9100 9100 0.00 0.00 0.00 0.00
IND3 10 0 590 590 587 587 0.00 0.00 0.00 0.00
IND4 25 0 1092 1092 1102 1102 0.00 0.00 0.00 0.00
IND5 33 0 1314 1304 1307 1307 0.00 0.00 0.00 0.00
RL01 5000 0 472 392 473 905 501 480 472 818 0.30 11.39 0.05 0.05
RL02 10 000 0 637 131 641 722 674 042 636 895 0.95 32.45 0.25 0.12
RL03 10 000 0 641 289 650 343 674 950 640 580 0.95 33.04 0.26 0.12
RL04 10 000 0 697 712 699 617 740 270 697 239 0.99 32.26 0.25 0.13
RL05 10 000 0 728 595 730 857 778 313 728 670 1.05 34.52 0.26 0.12

(1.002) (1.005) (1.026) (1) 4.52(7.75) 145.37(249) 1.104(1.89) 0.58(1)

AJWANI et al.: FOARS: FLUTE BASED OBSTACLE-AVOIDING RECTILINEAR STEINER TREE CONSTRUCTION 203

[15] which is the same version of FLUTE as used inside
FOARS.

Our result for wirelength is the best among all the al-
gorithms and is 2.6% better as compared with FLUTE-2.5.
Compared with FLUTE-2.5, which has been demonstrated to
be significantly faster than other RSMT heuristics, FOARS
are 89% faster. FOARS are 7.75 and 249 times faster than [8]
and [10], respectively. Again FOARS performs much better
when we have large number of pin vertices in the benchmark
(RC12, RL01–RL05). The improvement in wirelength over
FLUTE-2.5 is due to the effective partitioning algorithm for
high-degree nets and the application of the local refinement
technique as shown in Fig. 7(b).

IX. Conclusion

In this paper, we presented FOARS, an efficient algorithm
to construct OARSMT and RSMT based on extremely fast
and high-quality Steiner tree generation tool called FLUTE.
We proposed a novel OASG algorithm with a linear number of
edges. We also proposed an obstacle aware version of FLUTE,
which generates OAST. Our top-down partition approach
empowers OA-FLUTE to handle high-degree nets and dense
obstacle region. Our implementation of OBTree is simple and
extremely efficient for checking blockage with obstacles. Our
results indicate that our approach is the best tradeoff for quality
and runtime for both OARSMT and RSMT construction. Our
experiments prove that FOARS obtains good quality solution
with excellent runtime as compared with its peers.

Acknowledgment

The authors acknowledge Lin et al. [6], Liang et al. [10],
Long et al. [8], and Liu et al. [11], [12] for sending us their
binaries for comparison and clearing our doubts, if any, with
respect to the results.

References

[1] Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Y. Ge, X. Hu, and G. Yan, “FORst:
A 3-step heuristic for obstacle-avoiding rectilinear Steiner minimal tree
construction,” in Proc. JICS, 2004, pp. 107–116.

[2] Z. Shen, C. C. N. Chu, and Y.-M. Li, “Efficient rectilinear Steiner tree
construction with rectilinear blockages,” in Proc. ICCD, 2005, pp. 38–
44.

[3] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An-OARSMan:
Obstacle-avoiding routing tree construction with good length perfor-
mance,” in Proc. ASP-DAC, 2006, pp. 630–635.

[4] Y. Shi, P. Mesa, H. Yao, and L. He, “Circuit simulation based obstacle-
aware Steiner routing,” in Proc. DAC, 2006, pp. 385–388.

[5] P.-C. Wu, J.-R. Gao, and T.-C. Wang, “A fast and stable algorithm for
obstacle-avoiding rectilinear Steiner minimal tree construction,” in Proc.
ASP-DAC, 2007, pp. 262–267.

[6] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L. Yang,
“Obstacle-avoiding rectilinear Steiner tree construction based on span-
ning graphs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 27, no. 4, pp. 643–653, Apr. 2008.

[7] J. Long, H. Zhou, and S. O. Memik, “An O(n log n) edge-based algorithm
for obstacle-avoiding rectilinear Steiner tree construction,” in Proc.
ISPD, 2008, pp. 126–133.

[8] J. Long, H. Zhou, and S. O. Memik, “EBOARST: An efficient edge-
based obstacle avoiding-rectilinear Steiner tree construction algorithm,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 12,
pp. 2169–2182, Dec. 2008.

[9] I. H.-R. Jiang, S.-W. Lin, and Y.-T. Yu, “Unification of obstacle-avoiding
rectilinear Steiner tree construction,” in Proc. SoCC, 2008, pp. 127–130.

[10] L. Li and E. F. Y. Young, “Obstacle-avoiding rectilinear Steiner tree
construction,” in Proc. ICCAD, 2008, pp. 523–528.

[11] C.-H. Liu, S.-Y. Yuan, S.-Y. Kuo, and Y.-H. Chou, “An O(n log n) path-
based obstacle-avoiding algorithm for rectilinear Steiner tree construc-
tion,” in Proc. DAC, 2009, pp. 314–319.

[12] C.-H. Liu, S.-Y. Yuan, S.-Y. Kuo, and J.-H. Weng, “Obstacle-avoiding
rectilinear Steiner tree construction based on Steiner point selection,” in
Proc. ICCAD, 2009, pp. 26–32.

[13] L. Li, Z. Qian, and E. F. Y. Young, “Generation of optimal obstacle-
avoiding rectilinear Steiner minimum tree,” in Proc. ICCAD, 2009, pp.
21–25.

[14] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” SIAM
J. Appl. Math., vol. 30, no. 1, pp. 104–114, Jan. 1976.

[15] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83, Jan. 2008.

[16] G. Ajwani, C. Chu, and W.-K. Mak, “FOARS: FLUTE based obstacle-
avoiding rectilinear Steiner tree construction,” in Proc. ISPD, 2010, pp.
185–192.

[17] Y. F. Wu, P. Widmayer, and C. K. Wong, “A faster approximation
algorithm for the Steiner problems in graphs,” Acta Informatica, vol. 23,
no. 2, pp. 223–229, 1986.

[18] H. Zhou, N. V. Shenoy, and W. Nicholls, “Efficient minimum spanning
tree construction without Delaunay triangulation,” in Proc. ASP-DAC,
2001, pp. 192–197.

Gaurav Ajwani (S’09) received the B.S. degree
from the Netaji Subhas Institute of Technology,
University of Delhi, New Delhi, India, in 2006, and
the M.S. degree in computer engineering from Iowa
State University, Ames, in 2010.

Since March 2010, he has been a Computer-
Aided Design Engineer developing flows for Intel,
Hillsboro, OR. Before joining Iowa State University,
he worked briefly with Freescale, Austin, TX, as
a Design Engineer. His current research interests
include routing for multi-terminal net in the presence

of obstacles.
Mr. Ajwani’s work titled “FOARS: FLUTE based obstacle avoiding recti-

linear Steiner tree construction” was nominated for the Best Paper Award at
the International Symposium for Physical Design in 2010.

Chris Chu received the B.S. degree in computer
science from the University of Hong Kong, Pokfu-
lam, Hong Kong, in 1993, and the M.S. and Ph.D.
degrees in computer science from the University of
Texas, Austin, in 1994 and 1999, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Iowa State University, Ames. His area of expertise
includes computer-aided design of very large scale
integration physical design, and design and analysis
of algorithms. His current research interests include

performance-driven interconnect optimization and fast circuit floorplanning,
placement, and routing algorithms.

Dr. Chu received the IEEE Transactions on Computer-Aided Design

Best Paper Award in 1999 for his work in performance-driven interconnect
optimization, another IEEE Transactions on Computer-Aided Design

Best Paper Award in 2010 for his work on routing tree construction, the ISPD
Best Paper Award in 2004 for his work on efficient placement algorithms, and
the Bert Kay Best Dissertation Award for 1998 to 1999 from the Department
of Computer Sciences, University of Texas, Austin.

204 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 2, FEBRUARY 2011

Wai-Kei Mak (M’03) received the B.S. degree
in computer science from the University of Hong
Kong, Pokfulam, Hong Kong, in 1993, and the
M.S. and Ph.D. degrees in computer science from
the University of Texas, Austin, in 1995 and 1998,
respectively.

From 1999 to 2003, he was with the Department
of Computer Science and Engineering, University
of South Florida, Tampa, as an Assistant Professor.
Since 2003, he has been with the Department of
Computer Science, National Tsing Hua University,

Hsinchu, Taiwan, where he is currently an Associate Professor. His current
research interests include very large scale integration physical design automa-
tion, field-programmable gate array architecture, and computer-aided design.

Dr. Mak has served on the program and/or the organizing committees of the
Asia South Pacific Design Automation Conference, the International Confer-
ence on Field Programmable Logic and Applications, and the International
Conference on Field-Programmable Technology. He was the General Chair
of the 2008 International Conference on Field-Programmable Technology and
was the Technical Program Co-Chair of the same conference in 2006. He has
been in the Steering Committee of the International Conference on Field-
Programmable Technology since 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d00610074006300680020007400680065002000220053007500670067006500730074006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

