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Abstract—The Discrete Fourier Transform (DFT) is the 
ubiquitous method of choice for spectral testing. Nevertheless, 
the correct application of DFT for slightly distorted sinusoidal 
signals requires either strict coherent sampling, or careful 
windowing, or other methods that are not computationally 
efficient. This paper introduces an improved method for 
achieving accurate spectral testing for approximate sinusoidal 
signals without the need for coherent sampling or windowing. 
Theoretical analysis, simulation and experimental results show 
that the proposed method is faster than the original method 
and more robust when the signal frequency is close to Nyquist 
frequency. Comparative studies demonstrate that the proposed 
algorithm achieves better spectral testing accuracies than those 
obtained using the windowing techniques. 

Keywords-Discrete Fourier Transform; coherent sampling; 
spectral testing 

I. INTRODUCTION 

Spectral performance of an integrated circuit is of critical 
concern in many important application areas such as signal 
processing and communications. It is well known that 
Discrete Fourier Transform (DFT) or its fast implementation 
Fast Fourier Transform (FFT) is the most prevalent method 
for spectral testing. However, when performing FFT for 
spectral testing of slightly distorted sinusoidal signals, the 
signal frequency and the sampling clock frequency of the 
data acquisition system must satisfy very stringent coherency 
condition. In the FFT algorithm, even the slightest 
mismatches between the two frequencies could cause a 
frequency leakage phenomenon in which energy from the 
fundamental spectral line is spread into neighboring 
frequencies. This causes the appearance of a “skirt” around 
the fundamental spectral line. 

In order to combat frequency leakage, the IEEE standard 
[1] as well as the best practice in industry is to require 
coherent sampling, which means the sampling clock signal 
should be perfectly synchronized with the signal under test. 
As a result, an integer multiple of signal periods are captured 
in a data record M. When this condition is guaranteed, direct 
use of FFT is permitted and the data analysis is 
computationally very efficient when M is the power of 2. It 
requires only O(Mlog2M) operations. Unfortunately, strictly 
coherent sampling requires an accurate synthesizer, which 
requires more design effort and large die area and is 
therefore unsuitable for on-chip implementation. 

An alternative method is to use the windowing technique 
[2][3] while allowing noncoherent sampling. This technique 
does not remove the skirting due to noncoherency, rather it 
merely suppresses the skirting levels at frequencies far away 
from the fundamental frequency. By doing so it alters the 
heights of the original spectral lines. Care must be taken in 
order to correctly recover the spectral lines. Furthermore, due 
to the fact that the amount of skirt suppression is limited, the 
windowing technique is not effective in spectral analysis of 
high purity signals. 

Other methods to combat spectral leakage include 
singular value decomposition [4], 2-D FFT [5], filter banks 
[6] and removing leakage in frequency domain [7]. These 
methods are accurate but they are very inefficient in 
computation. 

In order to overcome the shortcomings of the above 
methods, the concept of fundamental identification and 
replacement was first introduced in [8]. In this method, the 
amplitude, frequency and phase of the fundamental harmonic 
component are estimated first. Then the noncoherent 
fundamental harmonic component is replaced by a sine 
component that has the same amplitude and phase but with a 
slightly modified frequency so that it becomes coherent with 
the sampling clock. The method does not require coherent 
sampling or windowing. However, in the cases when the 
selected data record length M has large prime factors or M 
itself is a prime number, the computational efficiency of FFT 
(a component of the algorithm) is poor. Furthermore, the 
robustness of the method is reduced when the signal 
frequency is near Nyquist rate and additive noise is relative 
large. 

In this paper an improved fundamental identification and 
replacement technique is proposed. The new method uses a 
data record length that has only prime factors of 2 or 3, the 
smallest prime numbers. This guarantees that the new 
method is computational efficient with minimal negative 
impact on spectral analysis. The paper also introduces a new 
algorithm for counting the signal periods in the data which 
makes the proposed method more robust when the signal 
frequency is near Nyquist rate. In Section II, an improved 
fundamental identification and replacement technique is 
proposed in detail. The simulation and experimental results 
are reported in Section III and IV respectively. Section V 
concludes this paper. 
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II. THE IMPROVED FUNDAMENTAL IDENTIFICATION   

AND REPLACEMENT TECHNIQUE 

     This section we will discuss the improved fundamental 
identification and replacement method in detail. Denote fs as 
the sampling frequency, Ts=1/fs as the sampling intervals, fi 
as the unknown input signal frequency, and M0 as the 
nominal data record length. Then J=M0fi/fs=J0+  will be the 
number of periods of the input signal in the data record, 
where J0 is the integer part of J,  is the fractional part of J. 
J0 and M0 are assumed to be co-prime.  is unknown, so is J 
(J0 could be known). 

Suppose the input signal is 

                   
( ) sin(2 )ix t A f t hdπ θ= + +

    
                     (1) 

where 1A ≈ , [0, 2 )θ π∈ , hd is the sum of 2nd and higher 

harmonic components. 
The samples of x(t) at sampling rate fs are given by: 

             [ ] sin(2 )i
s

k
x k A f hd

f
π θ= + +                               (2) 

Since J=M0fi/fs=J0+ , 
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 1[ ] [ ]hx k x k= +                                                                    (3) 
 

In (3), x1[k] is the fundamental harmonic component of x[k], 
xh[k] is the sum of the 2nd and higher harmonic components 
of x[k]. From [8], we know that as long as  is non-zero, 
which means the data record length is not exactly an integer 
number of signal periods,  the DFT algorithm introduces an 
error term (skirt term) in the Fourier transform of the 
fundamental component. This leakage term can be so large 
that it completely inundates the harmonic distortion 
components, making it impossible to correctly test the true 
spectrum of the signal.  

In order to estimate and remove the skirt term from the 
DFT spectrum, the concept of fundamental identification and 
replacement was first introduced in [8]. In this method, the 
amplitude, frequency and phase of the fundamental harmonic 
component are estimated firstly in the time domain. Then the 
noncoherent fundamental harmonic component is replaced 
by a sine component that has the same amplitude and phase 
but with a slightly modified frequency so that it becomes 
coherent with the sampling clock. After that the standard 
FFT spectral analysis is done as usual. 

Unfortunately, the method in [8] has two shortcomings. 
The first shortcoming is that when the selected data record 
length M has large prime factors or M itself is a prime 
number, the computational efficiency of FFT (a component 
of the original algorithm) is poor. In order to avoid the cases, 
we choose the data record length M that has only prime 
factors of 2 or 3, the two smallest prime numbers. 
Furthermore, the pairs far away from zero, such as the pairs 
whose absolute values are larger than / 2A , are used to 
select the most suitable data record length M so that the 
effects of noise can be reduced greatly. For example, we find 
the first point x[k1] whose absolute value is larger than 

/ 2A  in the original data record, then compare x[k1] with 
x[M1+k1], x[M2+k1], ��, x[Mi+k1], ��, x[MN+k1], (Mi 
has only prime factors of 2 or 3, the smallest prime numbers. 
MN is close to the length of original data record), to find 
x[Mi+k1] that minimizes the following equation 

2 2
1 1 1 1

2
1 1

( [ ] [ ]) ( [ 1] [ 1])

( [ 2] [ 2])   (i=1, 2, 3, ..., N)  

i i

i

x M k x k x M k x k

x M k x k

+ − + + + − +

+ + + − +
            (4) 

then x[Mi+k1] most closely matches x[k1]. That is, the sub-
sequence from x[k1] through x[Mi+k1] most closely matches 
an integer number of signal periods. Then Mi which has only 
prime factors of 2 or 3 is the most suitable data record 
length. When this is guaranteed, the proposed method is 
computationally more efficient than the original method. 
After choosing the most suitable data record length M, we 
still use the positive zero-crossing point as the starting point 
of the data record. For instance, assuming x[k2] to be a 
positive zero-crossing point near x[k1], then x[k2] to x[M+k2-
1] is used for spectral analysis. By doing so,  will be 
approximately 0 and the errors in estimating  will have less 
effects. 

The second shortcoming is that the robustness of the 
original method is reduced when the signal frequency is near 
Nyquist rate and additive noise is relative large. The reason 
is that the method in [8] doesn’t count the integer cycles of 
input signal correctly in the cases. Therefore, a new accurate 
method for counting the integer cycles of input signal is 
applied in the new method. 

The new method for counting the integer cycles Jint in the 
data sequence from x[k2] to x[M+k2-1] is introduced as 
follows (here we call it method I).  

a) Let  

      y[k]=1 if [ ] / 2x k A≥ , 

      y[k]=-1 if [ ] / 2x k A≤ − ,  

      y[k]=0 if / 2 [ ] / 2A x k A< <  

             then generate a new sequence y[k] ( by doing this, 
the effects of noise are  reduced greatly ). 

b) In the sequence y[k], if the adjacent elements are  
       the same, choose only one element, then get a new  
       sequence  w[k]. 
c) Define the variable c 

– If for all k, we have w[k]=w[k+4], then let c=0 
indicating f

in
 f

s
/4. 

– If there is at least one k with w[k] w[k+4],  
then let c=1 indicating  f

in
 >f

s
/4 .  

d) Let [ ] [ ]z k y k= , then get the new sequence z[k]. 

e) In the sequence z[k], if the adjacent elements are  
       the same, choose only one element, then get a new  
       sequence  zz[k]. 
f) Count the sum  sum(zz) of the non-zreo elements  in   

               sequence zz[k], 
g) Compute the integer cycles Jint 
       Jint=floor(sum(zz)/2) if c=0 
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       Jint=M/2-floor(sum(zz)/2) if c=1. 
The algorithm (in step c) which determines whether the 

signal frequency is larger than / 4sf  can be easily proved by 
pigeonhole principle [9]. Because of page limitation, we 
won’t discuss it in this paper. 

       It should be pointed out that this method for counting 
the integer cycles is not robust when fin is close to fs/4. In 
this case, the step size of x[k]’s phase is close to /2. 
Because of the noise, y[k]’s value is not accurate when x[k] 

is close to / 2A  or / 2A− . Therefore, when fin is close 
to fs/4, we use another method to count the integer cycles of 
input signal (Here we call it method II ). After method I is 

executed, we get Jint, if 
int20% 30%

J

M
< < , we use method 

II to recount Jint. Method II is summarized by the following  
two steps: 

1)  Define the variable R  
            For all i, if [ 1] [ ]x i x i+ > , let R=1, otherwise R=-1,  

           so R reflects the rising and falling trend of sine wave. 
        2)  The integer number of cycles Jint  can be counted at 

      every transition from R=-1 to R=1. 
Method II is extremely robust  when fin is close to fs/4. 

The procedure of the improved fundamental 
identification and replacement technique can be outlined in 
following 11 steps. 

1) Capture  a sufficient large number of samples, 
2) Find the first point x[k1] whose absolute value is 

larger than / 2A , 
3) choose the most suitable  data record length M.  

compare x[k1] with x[M1+k1], x[M2+k1], 
x[M3+k1], ��,x[Mi+k1], ��, x[MN+k1]  (Mi has 
only prime factors of 2 or 3, MN is close to the 
length of original data record), to find the point 
x[Mi+k1] that most matches x[k1] in the data 
sequence. Then Mi is just the most suitable data 
record length M. 

4) Find the positive zero-crossing point x[k2] near 
x[k1], use x[k2] to x[k2+M-1] as the data record. 

5) normalize the data record using the power-based 
normalization, and get the first estimate of the 

fundamental harmonic magnitude 0A . 

6)  count the integer cycles Jint of the sequence from 
x[k2] to x[k2+M-1] using method I, 

7) If int20% 30%
J

M
< < , recount Jint using method II, 

8) Compute the fractional cycle 

2 0 2 0

1
[arcsin( [ ] / ) arcsin( [ ] / )]

2
x k A x k M A

π
Δ = − +         (5) 

       Then the input signal frequency is 

int
i s

J
f f

M

+ Δ
=                                  (6) 

9) At a subset of data points write 

0

0 0

[ ] sin(2 )

cos( )sin(2 ) sin( )cos(2 )
i k

i k i k

x k A f t

A f t A f t

π θ

θ π θ π

= +

= +     
(7) 

   and use least square method to identify A0cos( ) and  
A0sin( ). 

10) Perform the fundamental component replacement 

0

0 int

[ ] [ ] sin(2 )

sin(2 / )
i k

s

x k x k A f t

A f J M

π θ

π θ

= − +

+ +
                   (8) 

The new data [ ]x k  is generated by replacing the 
fundamental component from the original data (which is 
sampled noncoherently and causes possibly large skirts) with 
one that is coherent with the sampling clock. This can be 
achieved by simply subtracting a sine component with the 
identified parameters and adding a sine component with the 
same A0 and  but with  being rounded to zero. 

11) Perform FFT analysis on [ ]x k  as  usual. 

The improved method uses the data record length M that 
has only prime factors of 2 or 3, the two smallest prime 
numbers. This guarantees that the new method is 
computational efficient. Furthermore, the new algorithm for 
counting the integer cycles of input signal makes the 
improved method more robust and more immune to noise. It 
works well even when the signal frequency is close to 
Nyquist rate and the additive noise is relative large.  

III. SIMUALTION RESULTS 

Simulation study has been conducted in MATLAB in 
order to verify the performance of the proposed algorithm. 
During the simulation, ADC (analog-to-digital converter) is 
modeled as a set of transition levels.  Its nonlinearity error is 
chosen to be a Gaussian random variable with zero mean and 
standard deviation DNL. In this section we present the 
spectral testing example of 14-bit ADC with DNL of 0.008 
LSB. Additive noise of input signal is also chosen to be a 
Gaussian random variable with zero mean and standard 
deviation of 1 LSB (least significant bit). The signal 
frequency is set to be close to Nyquist frequency. The data 
record length is 16384. 

For comparison, three different spectral testing methods 
are simulated first. They are: (1) straightforward application 
of FFT assuming periodic sampled sequence, (2) the 
proposed method, (3) perfect coherent sampling. Fig. 1 
shows a time domain illustration of the coherent and 
noncoherent data. Fig. 2 shows the spectrum of 
straightforward application FFT to the noncoherent data 
samples. From Fig. 2, we can see that there is a large “skirt” 
around the fundamental spectral line. Therefore 
straightforward application of FFT suffered from large errors 
due to noncoherency. The spectrum of the noncoherent dada 
samples using the proposed method and the spectrum from 
perfect coherent sampling data are shown in Fig. 3 and Fig. 4 
respectively. From Fig. 3 and Fig. 4 we see that both the 
spectrums show zero or minimal skirt, which indicates that 
the proposed method achieves comparable spectral testing 
accuracy as the perfect coherent sampling method.  
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 Fig. 1  Data samples from coherent and noncoherent sampling  

 
         Fig. 2  Straightforward application FFT  to the noncoherent data 

samples 

 
Fig. 3 Spectrum of the noncoherent data samples using 

the  proposed method 

 
Fig. 4  Spectrum from perfect coherent sampling 

We also compare the proposed method with the 
windowing techniques and the original method [8] using the 
same noncoherent data record. The corresponding 
comparative results are summarized in Table I. From Table I 
we can see that the result of straightforward application of 
FFT is totally wrong although the computation is most 
efficient. Most windowing techniques only achieve limited 

 

TABLE I.  M, ENOB,  AND TIME USING DIFFERENT METHODS 

Methods M ENOB Time(ms) 
Straightforward FFT 16384 2.12 6.75 

Hanning 16384 8.45 7.27 
Hamming 16384 5.22 7.68 
Blackman 16384 9.96 7.43 

 Blackmanharris 16384 12.04 7.59 

Original method ( )12769 113 113×  12.07 82.49 

Proposed method ( )3 65832 2 3×  12.09 9.44 

 
accuracies although the computation is efficient. Both the 
proposed method and the original method achieve similar 
spectral accuracies as the perfect coherent sampling method. 
But the original method is most computational inefficient 
because the most suitable data record length of the original 
method is 12769, which comprises large factor 113. 
Therefore the computation of FFT is computational 
inefficient. Fortunately, the proposed method is 
computationally very efficient with only slightly more 
computations than FFT.  

Therefore, the simulation results show that the proposed 
method can achieve better spectral testing accuracies than 
those obtained using the windowing techniques. The 
computational efficiency of the algorithm is excellent with 
only minimal addition to the computational complexity of  
FFT. 

IV. EXPERIMENTAL RESULTS 

Since the proposed method exhibit excellent spectral 
performance, we want to validate the algorithm with 
experimental data. Fig. 5 shows the segment of captured 
noncoherent data in time domain. The data is the output of a 
commercial 16-bit SAR (successive approximate register) 
ADC and the noncoherent data record length is 32767. 

To analyze the spectral contents of the signal, one can 
straightforwardly apply FFT to the raw data. The resultant 
spectrum is shown in Fig. 6. The clearly visible skirting 
completely dominates any harmonic distortion components 
that may be present. Hence no testing information is 
obtained.  

Several different windowing techniques are applied to 
analyze the spectral contents of the collected signal. Fig.7 
shows the spectrum using the hamming window. Compared 
to the spectrum obtained by performing FFT directly (see  
Fig. 6), the frequency leakage are combated a little.  
Nevertheless, the skirt is still large and the accurate spectral 
information cannot be available. In fact, in terms of 
windowing techniques, only one of the best windows such 
as Blackmanharris window can achieve accurate spectral 
testing result. Fig. 8 shows the spectrum using the 
Blackmanharris window.  From Fig. 8 we can see that the 
frequency leakage is combated effectively. 

Then the proposed method was applied to analyze the 
spectral contents of the captured signal. The resultant 
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spectrum is shown in Fig. 9.  From Fig. 9 we can see that 
the best data record length that applied in spectral analysis is 
7776. We also notice that all skirting effects have been 
removed and the noise floor has been pushed down to the 
−127dB level. Rich spectral contents are clearly shown. The 
corresponding dynamic parameters such as SFDR, THD and 
ENOB are 106.78 dB, -103.31 dB and 14.99 respectively.  

Fig. 10 illustrates the spectral comparison of the 
Blackmanharris method and the proposed method around 
the signal bin. The horizontal axis is the frequency 
normalized versus the clock frequency. The vertical axis is 
the normalized power in dB. From Fig .10 we see that, for 
Blackmanharris method, there is still a small skirt around 
the signal bin. In order to compute the signal power 
accurately in the spectral testing, we should add the power 
of the bins around the signal bin. Care must be taken in 
order to conduct the spectral testing accurately. Fortunately, 
for the proposed method, the skirt is removed thoroughly. 
The sole signal bin is enough to compute the signal power 
accurately. Therefore, the proposed method can be easily 
applied for the spectral testing.  

In fact, the noncoherent data is obtained by discarding the 
last point of the perfectly coherent sampling data record 
whose length is 32768. The spectrum of the perfectly 
coherent sampling data is shown in Fig. 11. The computed 
SFDR, THD, ENOB are 106.85 dB, -104.56 dB and 14.98 
respectively. Comparing the spectral parameters obtained by 
the proposed method and perfectly sampling method 
respectively, we can see that they are very close to each 
other. Furthermore, comparing Fig. 6 with Fig. 11 we can 
conclude that the coherent sampling condition is very strict 
and even tiny mismatches (lack of one point) can cause 
disastrous measurement results.  

We also compare the proposed method with the original 
method using the same noncoherent data record. All the 
comparative results are summarized in Table II. From Table 
II we can see that the result of straightforward application of 
FFT is totally wrong although the computation is most 
efficient. Most windowing techniques only achieve limited 
accuracies although the computation is efficient. Both the 
proposed method and the original method achieve similar 
spectral accuracies as the perfect coherent sampling method. 
But the original method is most computational inefficient 
because the most suitable data record length of the original 
method is 30947, which comprises a large factor 4421. 
Therefore the computation of FFT is computational 
inefficient. Fortunately, the proposed method is 
computationally very efficient with only slightly more 
computations than FFT. 

Therefore, the experimental results show that the 
proposed method achieves better spectral testing accuracies 
than those obtained using the windowing techniques. 

Fig. 5  Time domain data samples from the noncoherent sampling 

 
Fig. 6 Straightforward application of FFT  to the noncoherent data samples 

 
Fig. 7 Spectrum using Hamming window 

 
Fig. 8 Spectrum using Blackmanharris window 
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Fig. 9 Spectrum obtained by the proposed method 

 
Fig. 10 Spectral comparison of Blackmanharris method and the proposed 

method around the signal bin 

 
Fig. 11 Spectrum obtained by the perfectly cohrent sampling method 

TABLE II.  M, ENOB,  AND TIME USING DIFFERENT METHODS 

Methods M ENOB Time(ms) 
Straightforward FFT 32767 4.56 27.32 

Hanning 32767    12.76 32.53 
Hamming 32767 7.56 33.66 
Blackman 32767 13.97 31.82 

 Blackmanharris 32767 14.97 35.75 

Original method ( )30947 7 4421×  14.97 423.24 

Proposed method ( )5 57776 2 3×  14.99 51.27 

Perfect coherent 
sampling method 32768 14.98 30.99 

 

V. CONCLUSIONS 

An improved method for fast and accurate spectral 
testing is proposed. The proposed method does not require 
coherent sampling or the use of windowing. The proposed 

method uses the data record length that has only prime 
factors of 2 or 3, the smallest prime numbers. This 
guarantees that the new method is computational efficient. 
Therefore, the new method is faster than the original method. 
This paper also introduces a new algorithm for counting the 
signal periods in the data which makes the proposed method 
more robust and more immune to noise. Simulation and 
experimental results show that the proposed method exhibits 
fast and accurate performance for spectral testing. 
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Spectral comparison of Blackmanharris and the proposed method

 

 

Blackmanharris

The proposed method

0 0.5 1 1.5 2 2.5 3

x 10
4

-140

-120

-100

-80

-60

-40

-20

0

N
or

m
al

iz
ed

 p
ow

er
 s

pe
ct

ru
m

 in
 d

B

Frequency bins (32768= clock frequency)

Spectrum using perfectly coherent sampling method

SFDR=106.85 dB
THD=-104.56 dB
ENOB=14.98

169


