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Abstract—Most of the existing methods that test spectral 
characteristics require stringent coherent sampling. Maintaining 
coherent sampling is the major bottleneck in spectral testing. We 
propose a new method for spectral testing that completely relaxes 
the condition of coherent sampling. This method uses the 
frequency domain data to identify the non-coherent fundamental.  
The method is faster than other state of-the art algorithms that 
do not require coherency. Because of the relaxation in coherency 
requirement, this method is suitable for on-chip testing. 
Simulation results are presented to show the effectiveness of this 
method in the absence of coherency. A maximum error of 1dB 
and 1.5dB were obtained while estimating THD and SFDR 
respectively. The proposed 2-FFT method is successfully verified 
using measurement data. 

Keywords- coherent sampling, digitizer, FFT, on-chip test, SoC.  

I.  INTRODUCTION  
The latest developments in circuit design have resulted in 

integrating several circuit blocks on a single chip, such as 
System on Chip (SoC). Such systems include a number of 
analog and digital functional blocks embedded in a large 
system. All the blocks in such a system require to be tested for 
their performance. However, it is difficult to obtain access to 
the internal nodes of each block for testing. Therefore, there is 
a strong need for on-chip self-testing capability of such 
embedded systems. 

Most existing methods that test the spectral characteristics 
require coherent sampling [1]. The data record length should 
contain exactly an integer number of periods of the input 
signal. This requirement is stringent because, any tiny errors in 
the number of periods of input signal considered will result in 
wrong spectral results. Due to inherent random mismatches 
present in the semiconductor devices and noise, perfect 
coherent sampling cannot be guaranteed without using 
expensive frequency synthesizers. But, embedded systems 
cannot afford such expensive synthesizers as they consume 
large area. So, there is a high demand to develop new testing 
methods that do not require coherent sampling. 

Recently, in literature there has been study on methods to 
relax the condition of coherency. One method is the 
fundamental identification, removal and replacement method 
[2] which selects the best data record length and processes the 
final data to obtain accurate testing results. Other methods 
include the use of windows [3], the singular value 
decomposition method [4] which involves a time complexity of 

O (M3), the 2-D FFT method [5] which requires O (M2 log2 M) 
operations, the filter banks method [6] whose area linearly 
increases with the number of harmonics to be measured, the 
resampling technique [7] which uses an interpolator and a 
decimator to change the sampling frequency that further 
increases the area. These methods are accurate but they are 
inefficient in terms of either computational time or device area. 

This paper introduces a new method that eliminates the 
requirement of coherency for spectral testing. The other 
advantage includes faster computation with no additional area 
over head. This paper is arranged as follows. Section II 
explains the method to identify the non-coherent fundamental 
component and presents the proposed method. Two theorems 
are stated that form the basis for proposed method. Section III 
provides simulation results that show the effectiveness of this 
new method. Section IV presents measurement results using 
the proposed method. Section V concludes the discussion. 

II. THE 2-FFT METHOD 
Let fSig be the frequency of input signal, fSamp be the clock 

frequency, M be the total number of data points recorded to 
measure the spectral characteristics and J be the total number 
of periods of the input signal in the recorded data. The four 
parameters are related by the equation.  

   
*                                                (1)

fSigJ M
fSamp

=

 
 

The sampling is said to be coherent if J is an integer and 
non-coherent if J is not an integer. 

Let x(t) be the time domain representation of the analog 
signal. The signal is ideally a pure sine wave.  

( )
( ) ( )

( ) cos 2* * *

        = * cos 2* * * * sin 2* * *            (2)   

x t A f tSig

a f t b f tSig Sig

π φ

π π

= +

+

where, A is the amplitude of the sine wave,  is the phase.       
a = A*cos( ) and b = -A*sin( ). 

Let x[n] be the analog interpretation of the digital output 
obtained from the digitizer. x[n] can be represented by the 
following relation. 
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2* * *[ ] cos . .

2* * * 2* * *        cos sin . .    (3)

J nx n A f h o h noise jitter
M

J n J na b h o h noise jitter
M M

π

π π

= + + + +

= + + + +

for n = 0,1,2,….,M-1. M is usually selected to be a power of 2 
for faster processing of the FFT algorithm. ‘h.o.h’ represents 
the higher order harmonic components in the output data. 
These higher order harmonic terms include the harmonics 
information of both the input signal and the digitizer. If the 
spectral characteristics of the digitizer such as an ADC need to 
be measured, the input source should be more pure than the 
ADC and vice-versa. 

If the input signal of a digitizer is not coherently sampled, 
the DFT of the digitized data results in large spectral 
measurement errors.  However, using the proposed method, 
accurate spectral characteristics can be obtained even if the 
input is not coherently sampled. The motivation for the 
proposed method is obtained from the two theorems that are 
stated in the following section. The proof of the theorems is not 
presented due to space constraints.  

A. Foundation for the Proposed Method 
In this section, two theorems are proposed that could serve 

as a theoretical foundation for the proposed method. 

Consider the case when the input is not coherently sampled. 
As a result, J in equation (2) is not an integer. Let J = Jint + , 
where Jint is the integer part closest to J and  is the fractional 
part of J such that 0.5 0.5δ− < ≤ . Let J > max(25, 0.01*M), 
0.01 < (J/M) < 0.49 and M > 1024. Let H be the total number 
of harmonics present in the digitized signal, Ah and �h be the 
amplitude and initial phase of hth harmonic respectively such 
that Ah << A and �h � [0,2 ) for all 2  h  H. 

The above set of J and M is valid because it is a common 
practice to select more number of input cycles, J and collect 
more data record points, M to estimate the spectral 
characteristics of a signal. 

If Discrete Fourier Transform (DFT) is applied on a non-
coherently sampled data, severe skirting is observed in the 
frequency spectrum as shown in Figure 1. This skirting would 
affect the accurate estimation of harmonic power and signal 
power. It is because the bin corresponding to the particular 
frequency of interest not only contains the power of that 
frequency but also contains a fraction of the power of other 
frequencies (due to non-coherent sampling). The following 
theorems look at the major sources of error in estimating the 
harmonics when the input is not coherently sampled. 

Theorem1: For H, M, J, A, �, �h and Ah as mentioned above, 
if the input is not coherently sampled, i.e.,   0, the error 
in estimating the power of qth harmonic using DFT is 
mainly dominated by the non-coherency present in the 
fundamental component. 

Theorem 2: For H, M, J, A, �, �h and Ah as mentioned above, 
if the input is not coherently sampled, i.e.,   0, the error in 
estimating the power of qth harmonic from DFT due to non-
coherency in other harmonic components is negligible 
provided the non-coherent fundamental is removed and the  

 
Fig. 1: Spectrum of a non-coherently sampled data showing the skirting. 
 
harmonic frequency bins are separated by a minimum of 20 
bins. 

So, if the non-coherent fundamental can be identified, 
removed and replaced by a coherent fundamental, the errors in 
estimating the harmonic power will be considerably reduced. 

B. Identifying the non-coherent fundamental. 
To identify the non-coherent fundamental from the output 

data of the digitizer, it is required to estimate the exact value of 
J, a and b in equation (3). 

For a non-coherently sampled input signal, J is not an 
integer. In this method, J is estimated using the frequency 
domain data, Xk, which is obtained after taking the Discrete 
Fourier Transform (DFT) of x[n]. 

The index containing the maximum absolute value of the 
first (M/2+1) Fourier coefficients Xk (setting the DC 
component to zero), equals intJ . 

To estimate the value of , a three point calibration is done 
using the Fourier coefficients. From [8], for M > 1024, J > 
max(25 and 0.01*M), the Fourier coefficient Xk can be given 
as shown below. 

( ) ( )sin ( ) ( ) *(M-1)
,       =   ( )2 sin

      (4)J k i a J kA
X e ak J k M

M

π ϕ π
π

− − +
= −

    

From (4), using the values of XJint, XJint+1 and XJint-1, the 
value of  can be estimated by equation (5). 

int int
1 1int intln  -- (5)

2 2 / 2 /int int
1 1int int

X XJ J
X XM J J

imag
X XJ J j M j Me e

X XJ J

δ
π π π

−
+ −

= −
−− −

+ −
+

 

From intJ  and δ , estimate J  using intJ J δ= + . 

Now that J is known, a and b can be estimated using Least 
Squares Method. Multiplying equation (3) with 2* * *cos J n

M
π

and adding all the M points gives us, 
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Assuming the terms containing sine and cosine product, 

higher order harmonics, noise and jitter are negligible 
compared to that of the cosine squared term in (6), we have 

1 12* * * 2* * *2[ ]*cos *cos               
0 0

(7)
M MJ n J nx n

M Mn n
aπ π− −

≈
= =   

Similarly, multiplying equation (3) with 2* * *sin J n
M

π and 

adding all the M points gives us 

1 12* * * 2* * *2[ ]*sin *sin          
0 0

(8)
M MJ n J nx n

M Mn n
bπ π− −

≈
= =

   
From (7) and (8), a and b can be estimated as 

1 2* * *[ ]*cos
0                                             1 2* * *2cos
0
1 2* * *[ ]*sin
0                   1 2* * *2sin
0

(9)
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Mna M J n
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π

π
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=
−

=
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After estimating J, a and b, the non-coherent fundamental 
component can be identified. Let xnc[n] be the fundamental 
component of the actual non-coherent input signal x[n]. 

2* * * 2* * *[ ] * cos * sin          (11)J n J nxnc n a b
M M

π π≈ +
    

 

C. The 2-FFT Algorithm. 
In this section, the steps required to be followed to obtain 

accurate spectral characteristics from the output data using the 
newly proposed 2-FFT method are given. 

1. Obtain M recorded data points from the output of the 
digitizer, i.e., x[n], n = 0, 1, 2, …., M-1.  

2. Take DFT of the M points. Let Xk be the DFT 
coefficients calculated. k = 0,1,2,….,M-1 

2* * *1
[ ]*                                      (12)

0

k nM j
X x n e Mk n

π− −
=

=

  
 

3. Estimate Jint from the Fourier coefficients Xk using 
equation (13). 

arg max      int
1

2

     (13)                   J XkMk
=

≤ ≤      
 

4. Estimate the value of  using equation (5). 

5. Estimate number of input cycles intJ J δ= + . 

6. Estimate a and b using equations (9) and (10). 

7. Reconstruct xnc[n], the non-coherent fundamental 
component in x[n] using equation (11). 

8. Reconstruct xc[n], the coherent fundamental 
component closest to the actual input signal 
corresponding to intJ number of cycles. 

2* * * 2* * *int int[ ] *cos *sin       (14)J n J n
xc n a b

M M
π π

= +

 

9. Remove the non-coherent fundamental component 
from the actual data and replace it with the coherent 
fundamental component. Let ( )x n be the final data,  

[ ] [ ] [ ] [ ]                                       (15)n n n nx x xnc xc= − +

     

10. Take DFT of [ ]x n and perform spectral analysis to 
accurately estimate the spectral characteristics. 

D. Spectral Analysis. 
To calculate the signal power, the power of the bins 

adjacent to the actual bin corresponding to the fundamental 
component should also be added to reduce estimation errors. 
Care should be taken while calculating the harmonic power. To 
calculate the qth harmonic power, the main bin that should be 
considered is “round (q* J )” not “(q*Jint)”. Also the power of 
the bins surrounding the main harmonic bin needs to be added 
to estimate the harmonic power so that the errors due to non-
coherency in harmonics can be reduced. 

III. SIMULATION RESULTS 
For the simulation results, an ADC was generated using 

MATLAB with a resolution of 12 bits and DNL standard 
deviation of 0.02 LSB and noise at 0.5 LSB level.  

The THD and SFDR values of the ADC were recorded by 
sending in a pure sine wave with integer number of samples 
which is equivalent to using the direct DFT method with 
coherent sampling (standard testing). 

Next, a pure sine wave with non-integer number of cycles 
of the input signal was fed to the same ADC. This corresponds 
to the practical case where the input is not sampled coherently. 
The use of direct DFT method on such data resulted in large 
estimation errors. However, the proposed method produced 
accurate values of THD and SFDR. 
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When the ADC is fed with a coherently sampled input, a 
neat spectrum without any leakage in power is observed as 
shown in Fig. 2.  

However, if the input is not coherently sampled and a direct 
DFT is performed, leakage in the power of fundamental is 
observed in the output spectrum as shown in Fig 3.  

Using the proposed method after obtaining output of the 
ADC, the skirting due to fundamental component is completely 
removed as shown in Fig 4. Power in all the three figures (Fig. 
2-4) is normalized to the fundamental power. 

Table 1 shows the estimated values of THD and SFDR of 
ADC using both the direct DFT method and the proposed 2-
FFT method. It is observed that the estimation errors using 
proposed method are very less.  

To show the complete relaxation of the condition of 
coherency using the proposed method, 10000 runs were run on 
randomly generated  values ranging from -0.5 to 0.5 (the 
whole range of ) for a particular ADC and Jint. The THD and 
SFDR of the ADC obtained by coherent sampling are -73.04dB 
and 75.72dB respectively. The errors obtained in estimating the 
THD and SFDR values of the ADC are shown in Fig.5 and 
Fig.6 respectively. Table 2 presents the statistical results of 
proposed method which show its effectiveness. 

Another advantage that the 2-FFT method has compared to 
the state of the art ‘best data record length’ method [2] is the 
calculation speed. In the proposed method, M can be chosen to 
be a power of 2 to obtain faster and optimal performance of the 
Fourier transform. The time complexity is of the order of 
M*log(M). But, in the best data record length method [2], Mbest 
is not a power of 2 and hence the calculation time is large. The 
worst case time complexity of the method in [2] is of the order 
of Mbest

2, where Mbest is the best data record length. Table 3 
shows the calculation time taken for both the methods to 
estimate the spectral characteristics of an ADC using non-
coherent sampling in MATLAB. 

 

 
Fig.2: Spectrum of the ADC output when coherently sampled using the direct 
DFT Method. (J/M = 1997/8192) 

 
Fig.3: Spectrum of the ADC output when sampled non-coherently using 
the Direct DFT method. (J/M = 1997.033/8192) 

 
Fig.4: Spectrum of the ADC output when sampled non-coherently using 
the 2-FFT Method. (J/M = 1997.033/8192) 

 
Fig. 5: THD estimation error plot for varying delta using 2-FFT method.  
varies from -0.5 to 0.5 

  

 
Fig. 6: SFDR estimation error plot for varying delta using 2-FFT method.  
varies from -0.5 to 0.5  
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TABLE 1: ESTIMATEDVALUES OF THD AND SFDR 

Method THD (dB) SFDR (dB) 
2-FFT -73.05 75.67 
Direct DFT -63.05 68.35 
Ideal Values -73.04 75.72 

TABLE 2: STATISTICAL RESULTS OF THD AND SFDR ESTIMATION FOR 10000 
RUNS 

Method 
Mean 
THD (dB) 

Mean 
SFDR (dB) 

 THD 
(dB) 

SFDR 
(dB) 

2-FFT -73.17 75.89 0.19 0.27 

TABLE 3: COMPARISON OF CALCULATION TIME 

Method Time (s) 
2-FFT Method 0.0175 
Best Data Record Method [2] 0.1562 

IV. MEASUREMENT RESULTS 
In this section, six different Analog to Digital Converters 

(ADCs) with different speeds, resolutions and architectures are 
considered to perform spectral analysis. The input to each ADC 
is coherently sampled and the spectral characteristics obtained 
from coherent sampling are considered as the reference (or 
true) values. Later, the input signal to the ADCs is sampled 
non-coherently and the proposed method is used to estimate the 
spectral characteristics of each ADC.  

Figure 7 shows the spectrum of a coherently sampled 14-bit 
pipelined ADC. There is no skirting present in the spectrum. 
The values of second and third harmonic power with respect to 
signal power (HD2 and HD3), signal to noise ratio (SNR), 
Total Harmonic Distortion (THD) and Spurious Free Dynamic 
Range (SFDR) are noted and are considered as reference (or 
true) values.  

The input is then non-coherently sampled by the same 
ADC. Figure 8 shows the spectrum if a straight forward DFT is 
performed on the non-coherently sampled data. As expected, 
skirting is observed in the spectrum. Figure 9 shows the 
spectrum of the same non-coherently sampled data after using 
the proposed method. It can be seen that the skirting is 
completely eliminated in Figure 9. So, the proposed method 
can be used to estimate the spectral characteristics accurately 
even when the input is not coherently sampled. 

The spectral characteristics of all the six ADCs are 
estimated and presented in Table 4. The table contains the 
results obtained by performing both coherent and non-coherent 
sampling on the ADCs. The TRUE method represents the 
results obtained by coherent sampling. The proposed method 
represents the results obtained by performing non-coherent 
sampling and using the proposed method to estimate the 
spectral characteristics of each ADC. 

The first three rows show the results of three different 9-bit 
ADCs operating at different speeds. From the results, it can be 
mentioned that the proposed method is independent of the 
speed of ADC under test. The ADCs considered in rows four, 
five and six have different resolutions and architectures. The 

spectral characteristics of each ADC were accurately estimated 
by the proposed method. This shows the independence of the 
proposed method to various architectures and resolutions. 

From Table 4, it can be said that the proposed method 
accurately estimates the spectral characteristics of any ADC 
irrespective of the architecture, speed and resolution. 

 
Fig 7: Spectrum of a 14 bit pipelined ADC when coherently sampled using 
the straight forward DFT method.  

 
Fig 8: Spectrum of a 14 bit pipelined ADC when non-coherently sampled 
using the straight forward DFT method.  

 
Fig 9: Spectrum of a 14 bit pipelined ADC when non-coherently sampled 
using the proposed 2-FFT method.  
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TABLE 4: SPECTRAL RESULTS OF DIFFERENT ADCS USING PROPOSED 2-FFT 
METHOD (USING NON-COHERENTLY SAMPLED DATA) COMPARED WITH TRUE 
RESULTS (USING COHERENTLY SAMPLED DATA) 

 

V. CONCLUSION 
A new method to perform spectral testing using frequency 

domain data to identify the non-coherent fundamental was 
proposed. Simulation results were presented that illustrates the 
capability of the 2-FFT method to test for spectral 
characteristics even when the input is not coherently sampled. 
The worst case estimation errors of THD and SFDR values 

were 1dB and 1.5dB respectively. So, the major bottleneck of 
maintaining coherency for spectral testing is relaxed. The 2-
FFT method is faster than the state of-the art method by about 
10 times. The method achieves the above performance at no 
additional cost in terms of area. Also, measurement results 
were provided that shows the effectiveness of the proposed 2-
FFT method for ADCs with different speed, resolution and 
architecture. From the advantages mentioned above, this 2-
FFT method can be used in embedded signal processing for 
on-chip spectral testing where coherency is very challenging 
to obtain. 
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 ADC Method HD2 HD3 SNR THD SFDR 

9-bit,  TRUE -78.2 -60 49.8 -56.2 60 

 400 MSPS Proposed -77.2 -60.6 49.6 -56.2 60.6 

9-bit  TRUE -75.7 -56.7 49.6 -54.9 56.7 

 400 MSPS Proposed -75.3 -56.9 49.3 -54.5 56.9 

9-bit  TRUE -78.6 -58.2 43.8 -55.9 58.2 

 800 MSPS Proposed -78.9 -58.6 43.9 -55.9 58.6 

12-bit TRUE -92.6 -94.3 71.9 -85.1 89.6 

 pipeline Proposed -92.8 -93.8 72 -85.1 89.8 

14-bit  TRUE -90.8 -82.4 72.3 -81.4 82.4 

 Pipeline Proposed -90.8 -82.7 72.3 -81.7 82.7 

16-bit  TRUE -121 -107 92.2 -104 106.8 

 SAR Proposed -119 -107 92.2 -103 107 
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