2.1 Let \(C \subseteq \mathbb{R}^n \) be a convex set, with \(x_1, \ldots, x_k \in C \), and let \(\theta_1, \ldots, \theta_k \in \mathbb{R} \) satisfy \(\theta_i \geq 0 \), \(\theta_1 + \cdots + \theta_k = 1 \). Show that \(\theta_1 x_1 + \cdots + \theta_k x_k \in C \). (The definition of convexity is that this holds for \(k = 2 \); you must show it for arbitrary \(k \).) Hint. Use induction on \(k \).

Solution. This is readily shown by induction from the definition of convex set. We illustrate the idea for \(k = 3 \), leaving the general case to the reader. Suppose that \(x_1, x_2, x_3 \in C \), and \(\theta_1 + \theta_2 + \theta_3 = 1 \) with \(\theta_1, \theta_2, \theta_3 \geq 0 \). We will show that \(y = \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \in C \). At least one of the \(\theta_i \) is not equal to one; without loss of generality we can assume that \(\theta_1 \neq 1 \). Then we can write

\[
y = \theta_1 x_1 + (1 - \theta_1)(\mu_2 x_2 + \mu_3 x_3)
\]

where \(\mu_2 = \theta_2/(1 - \theta_1) \) and \(\mu_2 = \theta_3/(1 - \theta_1) \). Note that \(\mu_2, \mu_3 \geq 0 \) and

\[
\mu_1 + \mu_2 = \frac{\theta_2 + \theta_3}{1 - \theta_1} = \frac{1 - \theta_1}{1 - \theta_1} = 1.
\]

Since \(C \) is convex and \(x_2, x_3 \in C \), we conclude that \(\mu_2 x_2 + \mu_3 x_3 \in C \). Since this point and \(x_1 \) are in \(C \), \(y \in C \).

2.2 Show that a set is convex if and only if its intersection with any line is convex. Show that a set is affine if and only if its intersection with any line is affine.

Solution. We prove the first part. The intersection of two convex sets is convex. Therefore if \(S \) is a convex set, the intersection of \(S \) with a line is convex.

Conversely, suppose the intersection of \(S \) with any line is convex. Take any two distinct points \(x_1 \) and \(x_2 \in S \). The intersection of \(S \) with the line through \(x_1 \) and \(x_2 \) is convex. Therefore convex combinations of \(x_1 \) and \(x_2 \) belong to the intersection, hence also to \(S \).
2.5 What is the distance between two parallel hyperplanes \(\{ x \in \mathbb{R}^n \mid a^T x = b_1 \} \) and \(\{ x \in \mathbb{R}^n \mid a^T x = b_2 \} \)?

Solution. The distance between the two hyperplanes is \(|b_1 - b_2|/\|a\|_2 \). To see this, consider the construction in the figure below.

The distance between the two hyperplanes is also the distance between the two points \(x_1 \) and \(x_2 \) where the hyperplane intersects the line through the origin and parallel to the normal vector \(a \). These points are given by

\[
\begin{align*}
x_1 &= (b_1/\|a\|_2^2) a, \\
x_2 &= (b_2/\|a\|_2^2) a,
\end{align*}
\]

and the distance is

\[
\|x_1 - x_2\|_2 = |b_1 - b_2|/\|a\|_2.
\]
2.8 Which of the following sets S are polyhedra? If possible, express S in the form $S = \{ x \mid Ax \preceq b, Fx = g \}$.

(a) $S = \{ y_1 a_1 + y_2 a_2 \mid -1 \leq y_1 \leq 1, -1 \leq y_2 \leq 1 \}$, where $a_1, a_2 \in \mathbb{R}^n$.

(b) $S = \{ x \in \mathbb{R}^n \mid x \succeq 0, \sum_{i=1}^n x_i a_i = b_1, \sum_{i=1}^n x_i a_i^2 = b_2 \}$, where $a_1, \ldots, a_n \in \mathbb{R}$ and $b_1, b_2 \in \mathbb{R}$.

(c) $S = \{ x \in \mathbb{R}^n \mid x \succeq 0, x^T y \leq 1 \text{ for all } y \text{ with } \|y\|_2 = 1 \}$.

(d) $S = \{ x \in \mathbb{R}^n \mid x \succeq 0, x^T y \leq 1 \text{ for all } y \text{ with } \sum_{i=1}^n |y_i| = 1 \}$.

Solution.

(a) S is a polyhedron. It is the parallelogram with corners $a_1 + a_2, a_1 - a_2, -a_1 + a_2, -a_1 - a_2$, as shown below for an example in \mathbb{R}^2.

![Parallelogram diagram]

For simplicity we assume that a_1 and a_2 are independent. We can express S as the intersection of three sets:

- S_1: the plane defined by a_1 and a_2
- $S_2 = \{ z + y_1 a_1 + y_2 a_2 \mid a_1^T z = a_2^T z = 0, -1 \leq y_1 \leq 1 \}$. This is a slab parallel to a_2 and orthogonal to S_1
- $S_3 = \{ z + y_1 a_1 + y_2 a_2 \mid a_1^T z = a_2^T z = 0, -1 \leq y_2 \leq 1 \}$. This is a slab parallel to a_1 and orthogonal to S_1

Each of these sets can be described with linear inequalities.

- S_1 can be described as $u_k^T x = 0, \ k = 1, \ldots, n - 2$

where u_k are $n - 2$ independent vectors that are orthogonal to a_1 and a_2 (which form a basis for the nullspace of the matrix $[a_1 \ a_2]^T$).
2 Convex sets

Let \(c_1 \) be a vector in the plane defined by \(a_1 \) and \(a_2 \), and orthogonal to \(a_2 \). For example, we can take

\[
c_1 = a_1 - \frac{a_1^T a_2}{\|a_2\|^2} a_2.
\]

Then \(x \in S_2 \) if and only if

\[
-|c_1^T a_1| \leq c_1^T x \leq |c_1^T a_1|.
\]

Similarly, let \(c_2 \) be a vector in the plane defined by \(a_1 \) and \(a_2 \), and orthogonal to \(a_1 \), e.g.,

\[
c_2 = a_2 - \frac{a_2^T a_1}{\|a_1\|^2} a_1.
\]

Then \(x \in S_3 \) if and only if

\[
-|c_2^T a_2| \leq c_2^T x \leq |c_2^T a_2|.
\]

Putting it all together, we can describe \(S \) as the solution set of 2\(n \) linear inequalities

\[
v_k^T x \leq 0, \quad k = 1, \ldots, n - 2
\]

\[
-v_k^T x \leq 0, \quad k = 1, \ldots, n - 2
\]

\[
e_1^T x \leq |e_1^T a_1|
\]

\[
-e_1^T x \leq |e_1^T a_1|
\]

\[
e_2^T x \leq |e_2^T a_2|
\]

\[
-e_2^T x \leq |e_2^T a_2|
\]

(b) \(S \) is a polyhedron, defined by linear inequalities \(x_k \geq 0 \) and three equality constraints.

(c) \(S \) is not a polyhedron. It is the intersection of the unit ball \(\{x \mid \|x\|_2 \leq 1\} \) and the nonnegative orthant \(\mathbb{R}^n_+ \). This follows from the following fact, which follows from the Cauchy-Schwarz inequality:

\[
x^T y \leq 1 \text{ for all } y \text{ with } \|y\|_2 = 1 \iff \|x\|_2 \leq 1.
\]

Although in this example we define \(S \) as an intersection of halfspaces, it is not a polyhedron, because the definition requires infinitely many halfspaces.

(d) \(S \) is a polyhedron. \(S \) is the intersection of the set \(\{x \mid |x_k| \leq 1, \quad k = 1, \ldots, n\} \) and the nonnegative orthant \(\mathbb{R}^n_+ \). This follows from the following fact:

\[
x^T y \leq 1 \text{ for all } y \text{ with } \sum_{i=1}^n |y_i| = 1 \iff |x_i| \leq 1, \quad i = 1, \ldots, n.
\]

We can prove this as follows. First suppose that \(|x_i| \leq 1 \) for all \(i \). Then

\[
x^T y = \sum_i x_i y_i \leq \sum_i |x_i| |y_i| \leq \sum_i |y_i| = 1
\]

if \(\sum_i |y_i| = 1 \).

Conversely, suppose that \(x \) is a nonzero vector that satisfies \(x^T y \leq 1 \) for all \(y \) with \(\sum_i |y_i| = 1 \). In particular we can make the following choice for \(y \): let \(k \) be an index for which \(|x_k| = \max_i |x_i| \), and take \(y_k = 1 \) if \(x_k > 0 \), \(y_k = -1 \) if \(x_k < 0 \), and \(y_i = 0 \) for \(i \neq k \). With this choice of \(y \) we have

\[
x^T y = \sum_i x_i y_i = y_k x_k = |x_k| = \max_i |x_i|.
\]
2.10 Solution set of a quadratic inequality. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbb{R}^n \mid x^T Ax + b^T x + c \leq 0 \},$$

with $A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

(a) Show that C is convex if $A \succeq 0$.

(b) Show that the intersection of C and the hyperplane defined by $g^T x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda gg^T \succeq 0$ for some $\lambda \in \mathbb{R}$.

Are the converses of these statements true?

Solution. A set is convex if and only if its intersection with an arbitrary line $\{ \tilde{x} + tv \mid t \in \mathbb{R} \}$ is convex.

(a) We have

$$(\tilde{x} + tv)^T A(\tilde{x} + tv) + b^T (\tilde{x} + tv) + c = \alpha t^2 + \beta t + \gamma$$

where

$$\alpha = v^T Av, \quad \beta = b^T v + 2\tilde{x}^T Av, \quad \gamma = c + b^T \tilde{x} + \tilde{x}^T A \tilde{x}.$$
2.12 Which of the following sets are convex?

(a) A slab, i.e., a set of the form \(\{ x \in \mathbb{R}^n \mid a \leq a^T x \leq \beta \} \).

(b) A rectangle, i.e., a set of the form \(\{ x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, \ldots, n \} \). A rectangle is sometimes called a hyperrectangle when \(n > 2 \).
(c) A *wedge*, i.e., \(\{ x \in \mathbb{R}^n \mid a_1^T x \leq b_1, \ a_2^T x \leq b_2 \} \).

(d) The set of points closer to a given point than a given set, i.e.,
\[
\{ x \mid \| x - x_0 \|_2 \leq \| x - y \|_2 \text{ for all } y \in S \}
\]
where \(S \subseteq \mathbb{R}^n \).

(e) The set of points closer to one set than another, i.e.,
\[
\{ x \mid \text{dist}(x, S) \leq \text{dist}(x, T) \},
\]
where \(S, T \subseteq \mathbb{R}^n \), and

\[
\text{dist}(x, S) = \inf \{ \| x - z \|_2 \mid z \in S \}.
\]

(f) [HUL93, volume 1, page 93] The set
\[
\{ x \mid x + S_2 \subseteq S_1 \}
\]
where \(S_1, S_2 \subseteq \mathbb{R}^n \) with \(S_1 \) convex.

(g) The set of points whose distance to \(a \) does not exceed a fixed fraction \(\theta \) of the distance to \(b \), i.e., the set
\[
\{ x \mid \| x - a \|_2 \leq \theta \| x - b \|_2 \}
\]
you can assume \(a \neq b \) and \(0 \leq \theta \leq 1 \).

Solution.

(a) A slab is an intersection of two halfspaces, hence it is a convex set (and a polyhedron).

(b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite intersection of halfspaces.

(c) A wedge is an intersection of two halfspaces, so it is convex set. It is also a polyhedron. It is a cone if \(b_1 = 0 \) and \(b_2 = 0 \).

(d) This set is convex because it can be expressed as
\[
\bigcap_{y \in S} \{ x \mid \| x - x_0 \|_2 \leq \| x - y \|_2 \},
\]
i.e., an intersection of halfspaces. (For fixed \(y \), the set
\[
\{ x \mid \| x - x_0 \|_2 \leq \| x - y \|_2 \}
\]
is a halfspace; see exercise 2.9).

(e) In general this set is not convex, as the following example in \(\mathbb{R} \) shows. With \(S = \{-1, 1\} \) and \(T = \{0\} \), we have
\[
\{ x \mid \text{dist}(x, S) \leq \text{dist}(x, T) \} = \{ x \in \mathbb{R} \mid x \leq -1/2 \text{ or } x \geq 1/2 \}
\]
which clearly is not convex.

(f) This set is convex. \(x + S_2 \subseteq S_1 \) if \(x + y \in S_1 \) for all \(y \in S_2 \). Therefore
\[
\{ x \mid x + S_2 \subseteq S_1 \} = \bigcap_{y \in S_2} \{ x \mid x + y \in S_1 \} = \bigcap_{y \in S_2} (S_1 - y),
\]
the intersection of convex sets \(S_1 - y \).

(g) The set is convex, in fact a ball.
\[
\begin{align*}
\{ x \mid \| x - a \|_2 \leq \theta \| x - b \|_2 \} \\
= \{ x \mid \| x - a \|_2^2 \leq \theta^2 \| x - b \|_2^2 \} \\
= \{ x \mid (1 - \theta^2) x^T x - 2(\theta^2 b^T x) + (\theta^2 a^T a - \theta^2 b^T b) \leq 0 \}
\end{align*}
\]