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1.0 Introduction

There are number of excellent, comprehensive, and in-depth texts on MIPS assembly
language programming. This is not one of them.

The purpose of this text is to provide a simple and free reference for university level
programming and architecture units that include a brief section covering MIPS assembly
language programming. The text assumes usage of the QtSpim simulator. An appendix
is included that covers the download, installation, and basic use of the QtSpim
simulator.

The scope of this text addresses basic MIPS assembly language programming including
instruction set usage, stacks, procedure/function calls, QtSpim simulator system
services, multiple dimension arrays, and basic recursion.

1.1 Additional References

Some key references for additional information are listed below:
*  MIPS Assembly-language Programmer Guide, Silicon Graphics
*  MIPS Software Users Manual, MIPS Technologies, Inc.

*  Computer Organization and Design: The Hardware/Software Interface,
Hennessy and Patterson

More information regarding these references can be found on the Internet.
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2.0 MIPS Architecture Overview

This chapter presents a basic, general overview of the architecture of the MIPS
Processor.

The MIPS architecture is a Reduced Instruction Set Computer (RISC). This means that
there is a smaller number of instructions that use a uniform instruction encoding format.
Each instruction/operation does one thing (memory access, computation, conditional,
etc.). The idea is to make the lesser number of instructions execute faster. In general
RISC architectures, and specifically the MIPS architecture, are designed for high-speed
implementations.

2.1 Architecture Overview

The basic components of a computer include a Central Processing Unit (CPU), Random
Access Memory (RAM), Disk Drive, and Input/Output devices (i.e., screen and
keyboard), and an interconnection referred to as BUS.

A very basic diagram of a computer architecture is as follows:

CPU Random Access
@ Memory (RAM)
| BUS

(Interconnection)

—
Screen / Keyboard / Disk Drive /
Mouse Other Storage Media

Illustration 1: Computer Architecture
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Chapter 2.0 €4 MIPS Architecture Overview

Programs and data are typically stored on the disk drive. When a program is executed, it
must be copied from the disk drive into the RAM memory. The CPU executes the
program from RAM. This is similar to storing a term paper on the disk drive, and when
writing/editing the term paper, it is copied from the disk drive into memory. When
done, the updated version is stored back to the disk drive.

2.2 Data Types/Sizes
The basic data types include integer, floating point, and characters.

I architecture supports data storage sizes of byte, halfword (sometimes referred to as just
half), or word sizes. Floating point must be in either word (32-bit) or double word (64-
bit) size. Character data is typically a byte and a string is a series of sequential bytes.

The MIPS architecture supports the following data/memory sizes:

Name Size

byte 8-bit integer

halfword 16-bit integer

word 32-bit integer

float 32-bit floating-point number
double 64-bit floating-point number

The halfword is often referred to as just 'half . Lists or arrays (sets of memory) can be
reserved in any of these types. In addition, an arbitrary number of bytes can be defined
with the ".space" directive.

2.3 Memory

Memory can be viewed as a series of bytes, one after another. That is, memory is byte
addressable. This means each memory address holds one byte of information. To store
a word, four bytes are required which use four memory addresses.

Additionally, the MIPS architecture as simulated in QtSpim is little-endian. This means
that the Least Significant Byte (LSB) is stored in the lowest memory address. The Most
Significant Byte (MSB) is stored in the highest memory location.
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For a word (32-bits), the MSB and LSB are allocated as shown below.

31‘30‘29‘28‘27‘26‘25‘24 23‘22‘21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10‘ 9‘8 7‘6‘5‘4‘3‘2‘1‘0

MSB LSB

For example, assuming the following declarations:

numl: .word 42
num2: .word 5000000

Recall that 4210 in hex, word size, is 0x0000002A and 5,000,000y, in hex, word size, is
0x004C4B40.

For a little-endian architecture, the memory picture would be as follows:

variable value address
name

? 0x100100C
00 0x100100B
4cC 0x100100A
4B 0x1001009

Num2 - 40 0x1001008
00 0x1001007
00 0x1001006
00 0x1001005

Numl - 2A 0x1001004
? 0x1001003

Based on the little-endian architecture, the LSB is stored in the lowest memory address
and the MSB is stored in the highest memory location.
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2.4 Memory Layout

The general memory layout for a program is as shown:

high memory stack

heap

uninitialized data

data

text (code)

low memory reserved

The reserved section is not available to user programs. The text (or code) section is
where the machine language (i.e., the 1's and 0's that represent the code) is stored. The
data section is where the initialized data is stored. This include declared variables that
have been provided an initial value at assemble time. The uninitialized data section is
where declared variables that have not been provided an initial value are stored. If
accessed before being set, the value will not be meaningful. The heap is where
dynamically allocated data will be stored (if requested). The stack starts in high
memory and grows downward.

The QtSpim simulator does not distinguish between the initialized and uninitialized data
sections. Later sections will provide additional detail for the text and data sections.

2.5 CPU Registers

A CPU register, or just register, is a temporary storage or working location built into the
CPU itself (separate form memory). Computations are typically performed by the CPU
using registers.

The MIPS has 32, 32-bit integer registers ($0 through $31) and 32, 32-bit floating point
registers ($f0 through $f31). Some of the integer registers are used for special purposes.
For example, $29 is dedicated for use as the stack pointer register, referred to as $sp.
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The registers available and typical register usage is described in the following table.

Register Register Register Usage
Name Number
$zero $0 Hardware set to 0
$at $1 Assembler temporary
$v0 - $vl $2-$3 Function result (low/high)
$a0 - $a3 $4 - $7 Argument Register 1
$t0 - $t7 $8 - $15 Temporary registers
$s0 - $s7 $16 - $23 Saved registers
$t8 - $t9 $24 - $25 Temporary registers
$kO - $k1 $26 - $27 Reserved for OS kernel
$gp $28 Global pointer
$sp $29 Stack pointer
$fp $30 Frame pointer
$ra $31 Return address

The register names convey specific usage information. The register names will used in

the remainder of this document. Further sections will expand on register usage

conventions and address the 'temporary' and 'saved' registers.

2.5.1 Reserved Registers

The following reserved registers should not be used in user programs.

Register Name Register Usage
$kO - $k1 Reserved for use by the
Operating System
$at Assembler temporary
$gp Global pointer
$epc Exception program counter
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The $k0 and $k1 registers are reserved for use by the operating system and should not
be used in user programs. The $at register is used by the assembler and should not be
used in user programs. The $gp register is used point to global data (as needed) and
should not be used in user programs.

2.5.2 Miscellaneous Registers

In addition to the previously listed registers, there are some miscellaneous registers
which are listed in the table:

Register Name Register Usage
$pc Program counter
$status Status Register
$cause Exception cause register
$hi Used for some
$lo multiple/divide operations

The $pc or program counter register points to the next instruction to be executed and is
automatically updated by the CPU after instruction are executed. This register is not
typically accessed directly by user programs.

The $status or status register is the processor status register and is updated after each
instruction by the CPU. This register is not typically directly accessed by user
programs.

The $cause or exception cause register is used by the CPU in the event of an exception
or unexpected interruption in program control flow. Examples of exceptions include
division by 0, attempting to access in illegal memory address, or attempting to execute
an invalid instruction (e.g., trying to execute a data item instead of code).

The $hi and $lo registers are used by some specialized multiply and divide instructions.
For example, a multiple of two 32-bit values can generate a 64-bit results, which is
stored in $hi and $lo (32-bits each or a total of 64-bits).
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2.6 CPU/FPU Core Configuration

The following diagram shows a basic configuration of the MIPS processor internal

architecture.

MIPS Chip Core Configuration

CPU FPU
integer float
operations operations
$0 - $31 $f0 - $f31

The FPU (floating point unit) is also referred to as the FPU co-processor or simply co-

processor 1.
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3.0

Data representation refers to how information is stored within the computer. There is a
specific method for storing integers which is different than storing floating point values
which is different than storing characters. This chapter presents a brief summary of the
integer, floating-point, and ASCII representation schemes. It is assumed the reader is
already generally familiar with the binary, decimal, and hexadecimal numbering
systems.

Data Representation

3.1 Integer Representation

Representing integer numbers refers to how the computer stores or represents a number
in memory. As you know, the computer represents numbers in binary. However, the
computer has a limited amount of space that can be used for each number or variable.
This directly impacts the size, or range, of the number that can be represented. For
example, a byte (8 bits) can be used to represent 2° or 256 different numbers. Those 256
different numbers can be unsigned (all positive) in which case we can represent any
number between 0 and 255 (inclusive). If we choose signed (positive and negative),
then we can represent any number between -128 and +127 (inclusive).

If that range is not large enough to handle the intended values, a larger size must be
used. For example, a halfword (16 bits) can be used to represent 2'° or 65,536 different
numbers, and a word can be used to represent 2*? or 4,294,967,296 different numbers.
So, if you wanted to store a value of 100,000 then a word would be required.

The following table shows the ranges associated with typical sizes:

Size Size Unsigned Range Signed Range
Bytes (8 bits) 28 0 to 255 -128 to +127
Halfwords (16 bits) 216 0 to 65,535 —-32,768 to +32,767
Words (32 bits) 2% 0 to 4,294,967,295 -2,147,483,648 to
+2,147,483,647
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In order to determine if a value can be represented, you will need to know the size of
storage element (byte, halfword, word) being used and if the values are signed or
unsigned values.

* For representing unsigned values within the range of a given storage size,
standard binary is used.

* For representing signed values within the range, two's compliment is used.
Specifically, the two's compliment encoding process applies to the values in the
negative range. For values within the positive range, standard binary is used.

Additional detail regarding two's compliment is provided in the next section.
For example, the unsigned byte range can be represented using a number line as follows:

0 255

For example, the signed byte range can also be represented using a number line as
follows:

-128 0 +127

The same concept applies to halfwords and words with larger ranges.

Since unsigned values have a different, positive only, range than signed values, there is
some overlap between the values. For example when the unsigned and signed values
are within the overlapping positive range (0 to +127):

* Asigned byte representation of 12 is 0x0Css
* Anunsigned byte representation of 12 is also 0x0Cis

When the unsigned and signed values are outside the overlapping range:
* Asigned byte representation of -15 is 0xF1is

* Anunsigned byte representation of 241 is also 0xF1i6

This overlap can cause confusion unless the data types are clearly and correctly defined.
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3.1.1 Two's Compliment

The following describes how to find the two's compliment representation for negative
values.

To take the two's compliment of a number:
1. take the one's compliment (negate)
2. add 1 (in binary)

The same process is used to encode a decimal value into two's compliment and from
two's compliment back to decimal. The following sections provide some examples.

3.1.2 Byte Example

For example, to find the byte size, two's compliment representation of -9 and -12.

9 (8+1)=| 00001001 12 (8+4)=| 00001100
Step1| 11110110 Step 1:| 11110011
Step2| 11110111 11110100

-9 (in hex) = F7 -12 (in hex) = F4

Note, all bits for the given size, byte in this example, must be specified.

3.1.3 Halfword Example

To find the halfword size, two's compliment representation of -18 and -40.

18 (16+2) =|  0000000000010010 40 (32+8)=| 0000000000101000
Step1 | 1111111111101110 Step1 | 1111111111010111
Step2 | 1111111111101111 Step2 | 1111111111011000

-18 (hex) = FFEE -40 (hex) = FFD8

Note, all bits for the given size, halfwords in these examples, must be specified.
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3.2 Unsigned and Signed Addition

As previously noted, the unsigned and signed representations may provide different
interpretations for the final value being represented. However, the addition and
subtraction operations are the same. For example:

241 11110001 -15| 11110001
+ 7| 00000111 7| 00000111
248, 11111000 -8| 11111000

248 = F8 -8 = F8

The final result of 0xF8 may be interpreted as 248 for unsigned representation and -8 for
a signed representation.

Additionally, 0xF8;s is the ° (degree symbol) in the ASCII table.

As such, it is very important to have a clear definition of the sizes (byte, halfword, word,
etc.) and types (signed, unsigned) of data for the operations being performed.

3.3 Floating-point Representation

The representation issues for floating points numbers are more complex. There are a
series of floating point representations for various ranges of the value. For simplicity,
we will only look primarily at the IEEE 754 32-bit floating-point standard.

3.3.1 IEEE 32-bit Representation
The IEEE 754 32-bit floating-point standard is defined as follows:

3

—

30‘ 29‘ 28‘ 27‘ 26‘ 25‘ 24‘ 23 22‘ 21‘ 20‘ 19‘ 18‘ 17‘ 16‘ 15‘ 14‘ 13‘ 12‘ 11 ‘10 ‘ 9 ‘ 8 ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0

s biased exponent fraction

Where s is the sign (0 => positive and 1 => negative). When representing floating point
values, the first step is to convert floating point value into binary.
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The following table provides a brief reminder of how binary handles fractional
components:

2022202 2t 22 27
4 | 2|1 .| 121174 1/8
00 00 000

For example, 100.101, would be 4.625,o. For repeating decimals, calculating the binary
value can be time consuming. However, there is a limit since computers have finite
storage.

The next step is to show the value in normalized scientific notation in binary. This
means that the number should has a single, non-zero leading digit to the left of the
decimal point. For example, 8.125¢ is 1000.001, (or 1000.001; x 2°) and in binary
normalized scientific notation that would be written as 1.000001 x 2 (since the decimal
point was moved three places to the left). Of course, if the number was 0.125;, the
binary would be 0.001, (or 0.001, x 2°) and the normalized scientific notation would be
1.0 x 27 (since the decimal point was moved three places to the right). The numbers
after the leading 1, not including the leading 1, are stored left-justified in the fraction
portion of the word.

The next step is to calculate the biased exponent, which is the exponent from the
normalized scientific notation with plus the bias. The bias for the IEEE 754 32-bit
floating-point standard is 1271. The result should be converted to a byte (8 bits) and
stored in the biased exponent portion of the word.

Note, converting from the IEEE 754 32-bit floating-point representation to the decimal
value is done in reverse, however leading 1 must be added back (as it is not stored in the
word). Additionally, the bias is subtracted (instead of added).

3.3.1.1 IEEE 32-bit Representation Examples

This section presents several examples of encoding and decoding floating-point
representation for reference.
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3.3.1.1.1 Example — 7.751¢

For example, to find the IEEE 754 32-bit floating-point representation for -7.751o:

Example 1: -7.75

determine sign -7.75 => 1 (since negative)
convert to binary -7.75 = -0111.11,
normalized scientific notation = 1.1111 x 22
compute biased exponent 2,+127, = 129,

© and convert to binary = 10000001,

write components in binary:
sign exponent mantissa

1 10000001 11110000000000000000000
convert to hex (split into groups of 4)

11000000111110000000000000000000

1100 0000 1111 1000 0000 0000 0000 0000

c o0 F 8 0 O 0 0

final result: COF8 0000,

3.3.1.1.2 Example - 0.125;,
For example, to find the IEEE 754 32-bit floating-point representation for -0.1251,:

Example 2: -0.125

Page 16

determine sign -0.125 => 1 (since negative)
convert to binary -0.125 = -0.001,
normalized scientific notation = 1.0x 23

compute biased exponent -3, + 127, = 124

© and convert to binary = 01111100,

write components in binary:
sign exponent mantissa

1 01111100 00000000000000000000000
convert to hex (split into groups of 4)

10111110000000000000000000000000

1011 1110 0000 0000 0000 0000 0000 0000

B E 0 0 0 O 0 0

final result: BE00 0000,
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3.3.1.1.3 Example — 41440000

For example, given the IEEE 754 32-bit floating-point representation 414400006 find
the decimal value:

Example 3: 414400004
* convert to binary
0100 0001 0100 0100 0000 0000 0000 0000,
* split into components
0 10000010 10001000000000000000000:

* determine exponent 10000010, = 130,,
© and remove bias 130,,- 127, = 3,
* determine sign 0 => positive
*  write result +1.10001 x 2° = +1100.01 = +12.25

3.3.2 IEEE 64-bit Representation
The IEEE 754 64-bit floating-point standard is defined as follows:

63 62‘ ‘52 51‘ ‘0

s biased exponent fraction

The representation process is the same, however the format allows for an 11-bit biased
exponent (which support large and smaller values). The 11-bit biased exponent uses a
bias of 1023.
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4.0 QtSpim Program Formats

The QtSpim MIPS simulator will be used for programs in this text. The QtSpim
simulator has a number of features and requirements for writing MIPS assembly
language programs. This includes a properly formatted assembly source file.

A properly formatted assembly source file consists of two main parts; the data section
(where data is placed) and the text section (where code is placed). The following
sections summarize the formatting requirements and explains each of these sections.

4.1 Assembly Process

The QtSpim effectively assembles the program during the load process. Any major
errors in the program format or the instructions will be noted immediately. Assembler
errors must be resolved before the program can be successfully executed. Refer to
Appendix B regarding the use of QtSpim to load and execute programs.

4.2 Comments

The "#" character represents a comment line. Anything typed after the "#" is considered
a comment. Blank lines are accepted.

4.3 Assembler Directives

An assembler directive is a message to the assembler, or the QtSpim simulator, that tells
the assembler something it needs to know in order to carry out the assembly process.
This includes noting where the data is declared or the code is defined. Assembler
directives are not executable statements.

Directives are required for data declarations and to define the start and end of
procedures. Assembler directives start with a “.”. For example, “.data” or “.text”.

Additionally, directives are used to declare and defined data. The following sections
provide some examples of data declarations using the directives.
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4.4 Data Declarations

The data must be declared in the ".data" section. All variables and constants are placed
in this section. Variable names must start with a letter followed by letters or numbers
(including some special characters such as the "_"), and terminated with a ":" (colon).
Variable definitions must include the name, the data type, and the initial value for the

nen

variable. In the definition, the variable name must be terminated with a ":".

mn

The data type must be preceded with a "." (period). The general format is:

<variableName>: .<dataType> <initialvalue>

Refer to the following sections for a series of examples using various data types.

The supported data types are as follows:

Declaration
-byte 8-bit variable(s)
.half 16-bit variable(s)
.word 32-bit variable(s)
.ascii ASCII string
.asciiz NULL terminated ASCII string
.float 32 bit IEEE floating point number
.double 64 bit IEEE floating point number
-space <n> <n> bytes of uninitialized memory

These are the primary assembler directives for data declaration. Other directives are
referenced in different sections.
4.4.1 Integer Data Declarations

Integer values are defined with the .word, .half, or .byte directives. Two's compliment is
used for the representation of negative values. For more information regarding two's
compliment, refer to the Data Representation section.
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The following declarations are used to define the integer variables "wVar1" and "wVar2"
as 32-bit word values and initialize them to 500,000 and -100,000.

wVarl: .word 500000
wVar2: .word -100000

The following declarations are used to define the integer variables "hVar1" and "hVar2"
as 16-bit word values and initialize them to 5,000 and -3,000.

hvarl: .half 5000
hvar2: .half -3000

The following declarations are used to define the integer variables "bVar1" and "bVar2"
as 8-bit word values and initialize them to 5 and -3.

bvarl: .byte 5
bvar2: .byte -3

If an variable is initialized to a value that can not be stored in the allocated space, an
assembler error will be generated. For example, attempting to set a byte variable to 500
would be illegal and generate an error.

4.4.2 String Data Declarations

Strings are defined with .ascii or .asciiz directives. Characters are represented using
standard ASCII characters. Refer to Appendix D for a copy of the ASCII table for
reference.

The C/C++ style new line, "\n", and tab, "\t" tab are supported within in strings.

The following declarations are used to define a string "message" and initialize it to
“Hello World”.

message: .asciiz "Hello World\n"

In this example, the string is defined as NULL terminated (i.e., after the new line). The
NULL is a non-printable ASCII character and is used to mark the end of the string. The
NULL termination is standard and is required by the print string system service (to work
correctly).
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To define a string with multiple lines, the NULL termination would only be required on
the final or last line. For example,

message: .ascii "Line 1: Goodbye World\n"
.ascii "Line 2: So, long and thanks "
.ascii "for all the fish.\n"
.asciiz "Line 3: Game Over.\n"

When printed, using the starting address of 'message’, everything up-to (but not
including) the NULL will be displayed. As such, the declaration using multiple lines is
not relevant to the final displayed output.

4.4.3 Floating-Point Data Declarations

Floating-point values are defined with the .float (32-bit) or .double (64-bit) directives.
The IEEE floating-point format is used for the internal representation of floating-point
values.

The following declarations are used to define the floating-point variables "pi" to a 32-bit
floating-point value initialized to 3.14159 and "tao" to a 64-bit floating-point values
initialized them to 6.28318.

pi: .float 3.14159
tao: .double 6.28318

For more information regarding the IEEE format, refer to the Data Representation
section.

4.5 Constants

Constant names must start with a letter followed by letters or numbers including some
special characters such as the "_" (underscore). Constant definitions are created with an
"="sign.

For example, to create some constants named TRUE and FALSE and set them to 1 and O
respectively:

TRUE = 1
FALSE = 0

Constants are also defined in the data section. The use of all capitals for a constant is a
convention and not required by the QtSpim program. The convention helps
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programmers more easily distinguish between variables (which can change values) and
constants (which can not change values). Additionally, in assembly language constants
are not typed (i.e., not predefined to be a specific size such as 8-bits, 16-bits, 32-bits, or
64-bits).

4.6 Program Code
The code must be preceded by the ".text" directive.

In addition, there are some basic requirements for naming a "main" procedure (i.e., the
first procedure to be executed). The ".globl name" and ".ent name" directives are
required to define the name of the initial or main procedure. Note, the globl spelled
incorrectly is the correct directive. Also, the main procedure must start with a label with
the procedure name. The main procedure (as all procedures) should be terminated with
the ".end <name>" directive.

In the following example, the <name> would be the name of the main procedure, which
is “main”.

4.7 Labels

Labels are code locations, typically used as function/procedure name or as the target of a
jump. The first use of a label is the main program starting location, which must be
named 'main' which is a specific requirement for the QtSpim simulator.

The rules for a label are as follows:

e Must start with a letter
* May be followed by letters, numbers, or an

*  Must be terminated with a “:” (colon).
* May only be define once.

€ »

(underscore).

Some examples of a label include:

main:
exitProgram:

Characters in a label are case-sensitive. As such, Loop: and loop: are different
labels. This can be very confusing initially, so caution is advised.
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4.8 Program Template

The following is a very basic template for QtSpim MIPS programs. This general
template will be used for all programs.

# Name and assignment number

# m e~
# Data declarations go in this section.
.data

# program specific data declarations
o
# Program code goes in this section.
.text

.globl main

.ent main

main:

$

# your program code goes here.

$ o

# Done, terminate program.

1i $vo, 10
syscall # all done!
.end main

The initial header ( “.text”, “.globl main”, “.ent main”, and “main:”) will be the same for
all QtSpim programs.

A more complete example, with working code, can be found in Appendix A.
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In assembly-language, instructions are how work is accomplished. In assembly the
instructions are simple, single operation commands. In a high-level language, one line
might be translated into a series of instructions in assembly-language.

This chapter presents a summary of the basic, most common instructions. The MIPS
Instruction Set Appendix presents a more comprehensive list of the available
instructions.

5.1 Pseudo-Instructions vs Bare-Instructions

As part of the MIPS architecture, the assembly language includes a number of pseudo-
instructions. A bare-instruction is an instructed that is executed by the CPU. A pseudo-
instruction is an instruction that the assembler, or simulator, will recognize but then
convert into one or more bare-instructions. This text will focus primarily on the pseudo-
instructions.

5.2 Notational Conventions

This section summarizes the notation used within this text which is fairly common in the
technical literature. In general, an instruction will consist of the instruction or operation
itself (i.e., add, sub, mul, etc.) and the operands. The operands refer to where the data
(to be operated on) is coming from or where the result is to be placed.

The following table summarizes the notational conventions used in the remainder of the
document.

Operand Notation | Description

Rdest Destination operand. Must be an integer register.
Since it is a destination operand, the contents will be
over written with the new result.

Rsrc Source operand. Must be an integer register.
Register value is unchanged after the instruction.
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Src Source operand. Must be an integer register or an
integer immediate value. Value is unchanged after
the instruction.

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be over written with the new result.

FRsrc Source operand. Must be a floating-point register.
Register value is unchanged after the instruction.
Imm Immediate value.
Mem Memory location. May be a variable name or an

indirect reference (i.e., a memory address).

By default, the immediate values are decimal or base-10. Hexadecimal or base-16
immediate values may be used but must be preceded with a 0x to indicate the value is
hex. For example, 150 could entered in hex as 0x0F.

Refer to the chapter on Addressing Modes for more information regarding memory
locations and indirection.

5.3 Data Movement

CPU computations are typically performed using registers. As such, before
computations can be performed, data is typically moved into registers from variables
(i.e., memory) and when the computations are completed the data would be moved out
of registers into other variables.

5.3.1 Load and Store

To support the loading of data from memory (e.g., variables or arrays) into registers and
storing of data in register back to memory, there are a series of load and store
instructions. The load and store instructions only move data between register and
memory. Another instruction is used to move data between registers (as described in the
next section).

There is no load or store instructions that will move a value from a memory location
directly to another memory location.
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The general forms of the load and store instructions are as follows:

Instruction Description

l<type> Rdest, mem Load value from memory location
memory into destination register.

1i Rdest, imm Load specified immediate value
into destination register.

la Rdest, mem Load address of memory location
into destination register.

s<type> Rsrc, mem Store contents of source register
into memory location.

Assuming the following data declarations:

num:

wnum:
hnum:
bnum:
wans:
hans:
bans:

.word (0}
.word 42
.half 7
.byte 7
.word (0]
.half (0]
.byte 0

To perform, the basic operations of:

num =

wans
hans
bans

27

= wnum
hnum
bnum

The following instructions could be used:

1i
sw
lw
sw
1h
sh

$to,
$to,
$to,
$to,
$tl1,
$t1,

27
num
wnum
wans
hnum
hans

# num = 27

# wans = wnum

# hans hnum
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1b $t2, bnum
sb $t2, bans # bans = bnum

For the halfword and byte instructions, only the lower 16-bits are 8-bits are used.

5.3.2 Move

The various forms of the move instructions are used to move data between registers.
Both operands must be registers. The most basic move instruction, move, copies the
contents of an integer register into another integer register. Another set of move
instructions are used to move the contents of registers into or out of the special registers,
$hi and $lo.

In addition, different move instructions are required to move values between integer
registers and floating point registers (as discussed on the floating-point section).

There is no move instruction that will move a value from a memory location directly to
another memory location.

The general forms of the move instructions are as follows:

Instruction Description

move Rdest, RSrc Copy contents of integer source
register into integer destination
register.

mfhi Rdest Copy the contents from the $hi

register into Rdest register.

mflo Rdest Copy the contents from the $lo
register into Rdest register.

mthi Rdest Copy the contents to the $hi
register from the Rdest register.

mtlo Rdest Copy the contents to the $lo register
from the Rdest register.
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For example, the following instructions;
1i $to, 42
move S$tl, S$tO
will move the contents of register $t0, 42 in this example, into the $t1 register.

The mfhi, mflo, mtho, and mtlo instructions are required only when performing 64-bit
integer multiply and divide operations.

The floating point section will include examples for moving data between integer and
floating point registers.

5.4 Integer Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division,
remainder (remainder after division), logical AND, and logical OR. The general format
for these basic instructions is as follows:

Instruction Description

add Rdest, Rsrc, Src Signed addition
Rdest = Rsrc + Src or Imm

addu Rdest, Rsrc, Src | Unsigned addition
Rdest = Rsrc + Src or Imm

sub Rdest, Rsrc, Src | Signed subtraction
Rdest = Rsrc — Src or Imm

subu Rdest, Rsrc, Src | Unsigned subtraction
Rdest = Rsrc — Src or Imm

mul Rdest, Rsrc, Src | Signed multiply with no overflow
Rdest = Rsrc * Src or Imm

mulo Rdest, Rsrc, Src Signed multiply with overflow
Rdest = Rsrc * Src or Imm

mulou Rdest, Rsrc, Src  Unsigned multiply with overflow
Rdest = Rsrc * Src or Imm

mult Rsrcl, Rsrcl Signed 64-bit multiply
$hi/$lo = Rsrcl * Rsrc2
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multu Rsrcl, Rsrcl Unsigned 64-bit multiply
$hi/$lo = Rsrcl * Rsrc2
div Rdest, Rsrc, Src Signed divide

Rdest = Rsrc / Src or Imm

divu Rdest, Rsrc, Src Unsigned divide
Rdest = Rsrc / Src or Imm

div Rsrcl, RSrcl Signed divide with remainder
$lo = Rsrc1 / RSrc2
$hi = Rsrc1 % RSrc2

divu Rsrcl, RSrcl Unsigned divide with remainder
$lo = Rsrc1 / RSrc2
$hi = Rsrc1 % RSrc2

rem Rdest, Rsrc, Src Signed remainder
Rdest = Rsrc % Src or Imm

remu Rdest, Rsrc, Src | Unsigned remainder
Rdest = Rsrc % Src or Imm
abs Rdest, Rsrc Absolute value
Rdest = | Rsrc |
neg Rdest, Rsrc Signed negation
Rdest = - Rsrc
negu Rdest, Rsrc Unsigned negation
Rdest = - Rsrc

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).

Assuming the following data declarations:

wnuml: .word 651
wnum2 : .word 42
wansl: .word 0
wans2: .word (0]
wans3: .word (0]
hnuml: .half 73
hnum2: .half 15
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hans: .half 0
bnuml: .byte 7
bnum2: .byte 9
bans: .byte 0

To perform, the basic operations of:

wansl = wnuml + wnum2

wans2 = wnuml * wnum2
wans3 = wnuml % wnum2
hans = hnuml * hnum2
bans = bnuml / bnum2

The following instructions could be used:

1w $t0, wnuml

1w $tl, wnum2

add $t2, $t0, Stl

sw $t2, wansl # wansl

wnuml + wnum2

lw $t0, wnuml

lw $tl, wnum2

mul S$t2, S$t0, Stl

sw $t2, wans2 # wans2

wnuml * wnum2

1w $t0, wnuml

1w $tl, wnum2

rem S$t2, $tO0, S$tl

sw $t2, wans3 # wans = wnuml % wnum2

1h $t0, hnuml
1h $tl, hnum2

mul S$t2, S$t0, Stl

sh $t2, hans # hans hnuml * hnum2

1b $t0, bnuml

1b $tl, bnum2

div $t2, $t0, S$tl

sb $t2, bans # bans

bnuml / bnum2
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For the halfword load or store instructions, only the lower 16-bits are used. For the byte
instructions, only the lower 8-bits are used.

5.4.1 Example Program, Integer Arithmetic

The following is an example program to compute the
volume and surface area of a rectangular parallelepiped.

The formulas for the volume and surface area are as
follows:

volume = aSide* bSide * cSide
surfaceArea = 2(aSidex bSide + aSide * cSide + bSide * cSide)

This example main initializes the a, b, and c sides to arbitrary integer values.

# Example to compute the volume and surface area
# of a rectangular parallelepiped.

e __
# Data Declarations

.data

aSide: .word 73

bSide: .word 14

cSide: .word 16

volume: .word 0

surfaceArea: .word 0

o
# Text/code section

.text

.globl main

main:

$ -
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Load variables into registers.

lw $t0, aSide
lw $tl, bSide
lw $t2, cSide

Find volume of a rectangular paralllelpiped.
volume = aSide * bSide * cSide

mul S$t3, $t0, Stl
mul S$t4, S$t3, S$t2
sw $t4, volume

Find surface area of a rectangular parallelepiped.
surfaceArea = 2*(aSide*bSide+aSide*cSide+bSide*cSide)

mul $t3, $t0, Stl # aSide * bSide
mul S$t4, S$t0, S$t2 # aSide * cSide
mul S$t5, S$tl1, S$t2 # bSide * cSide

add $t6, S$t3, S$t4
add $t7, S$t6, S$t5
mul $t7, S$t7, 2

sw $t7, surfaceArea

Done, terminate program.

1i $v0o, 10 # call code for terminate
syscall # system call

.end main

Refer to the system services section for information on displaying the final results to the
console.

5.5 Logical Operations

The logical operations include logical AND, and logical OR, shift and rotate
instructions. The general format for these instructions is as follows:
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Instruction Description
and Rdest, Rsrc, Src |Logical AND

Rdest = Rsrc & Src or Imm
nor Rdest, Rsrc, Src | Logical NOR

Rdest = Rsrc | Src or Imm

not Rdest, Rsrc, Src |Logical NOT
Rdest = Rsrc = Src or Imm

or Rdest, Rsrc, Src |Logical OR
Rdest = Rsrc | Src or Imm

rol Rdest, Rsrc, Src |Rotate left
Rdest = Rsrc rotated left Src
or Imm places

ror Rdest, Rsrc, Src |Rotate right

Rdest = Rsrc rotated right Src
or Imm places

sll Rdest, Rsrc, Src |Shift left logical
Rdest = Rsrc shift left logical
Src or Imm places

sra Rdest, Rsrc, Src | Shift right arithmetic

Rdest = Rsrc shift right
arithmetic Src or
Imm places

srl Rdest, Rsrc, Src | Shift right logical
Rdest = Rsrc shift right logical
Src or Imm places

xor Rdest, Rsrc, Src Logical XOR
Rdest = Rsrc A Src or Imm

The & refers to the logical AND operation, the | refers to the logical OR operation , and
the A refers to the logical XOR operation as per C/C++ conventions. The | refers to the
logical NOR operation and the - refers to the logical NOT operation.

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).
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Assuming the following data declarations:

wnuml : .word 0x000000ff
wnum2 : .word 0x0000££00
wansl: .word 0
wans2: .word (0]
wans3: .word (0}

To perform, the basic operations of:

wansl = wnuml & wnum2
wans2 = wnuml | wnum2
wans3 = wnuml - wnum2

The following instructions

lw $t0, wnuml

1w $tl, wnum2

and S$t2, $t0, Stl

sw $t2, wansl # wansl

wnuml & wnum2

lw $t0, wnuml

lw $tl, wnum2
or $t2, $t0, S$tl
sw  $t2, wans2 # wans2 = wnuml | wnum2

lw $t0, wnuml

lw $tl, wnum2

not $t2, $tO0, S$tl

sw $t2, wans3 # wans3

wnuml - wnum2

For halfword load or store instructions, only the lower 16-bits are used. For the byte
instructions, only the lower 8-bits are used.

5.5.1 Shift Operations

The shift operations shift or move bits within a register. Two typical reasons for shifting
bits include isolating a subset of the bits within an operand for some specific purpose or
possibly for performing multiplication or division by powers of two. The two shift
operations are a logical shift and an arithmetic shift.
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5.5.1.1 Logical Shift

The logical shift is a bitwise operation that shifts all the bits of its source register by the
specified number of bits places the result into the destination register. The bits can be
shifted left or right as needed. Every bit in the source operand is moved the specified
number of bit positions and the newly vacant bit-positions are filled in with zeros. The
following diagram shows how the right and left shift operations work for byte sized
operands.

Shift Right Logical Shift Left Logical
7 6 5 432 10 7 6 5 432 10
1/0/1/1]0j0]11] 1/o0/1/1]/0/0]11]
0 —/o/1]/o/1]1/0]0]1] 0o/1/1/0/0/1/1/0]«= 0O

The logical shift treats the operand as a sequence of bits rather than as a number.

The shift instructions may be used to perform unsigned integer multiplication and
division operations for powers of 2. Powers of two would be 2, 4, 8, etc. up to the limit
of the operand size (32-bits for register operands).

In the examples below, 23 is divided by 2 by performing a shift right logical one bit. The
resulting 11 is shown in binary. Next, 13 is multiplied by 4 by performing a shift left
logical two bits. The resulting 52 is shown in binary.

Shift Right Logical Shift Left Logical
Unsigned Division Unsigned Multiplication
00foj1jol11/1]= 23 [ofojojo1]1]0]1]=
0jojojo/1/o1/1/= 12 |o|o|1]1]|0]1/0]0 = 52

As can be seen in the examples, a 0 was entered in the newly vacated bit locations on
either the right or left (depending on the operation).
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5.5.1.2 Arithmetic Shift

The arithmetic shift right is also a bitwise operation that shifts all the bits of its source
register by the specified number of bits places the result into the destination register.
Every bit in the source operand is moved the specified number of bit positions, and the
newly vacant bit-positions on the left are filled in. The original leftmost bit (the sign
bit) is replicated to fill in all the vacant positions. This is referred to as sign extension.
The following diagram shows how the shift right arithmetic operations works for a byte
sized operand.

Shift Right Arithmetic

The arithmetic shift treats the operand as a a signed number and extends the sign which
would be negative in this example.

However, the arithmetic shift rounds up and the standard divide instruction truncates.
As such, the arithmetic shift is not typically used to replace the signed divide instruction.

5.5.1.3 Shift Operations, Examples
This section provides a series of examples using the logical shift operations.

Assuming the following data declarations:

datal: .word 0x000000£ff
resultl: .word 0
result2: .word 0

To perform, the basic operations of:

resultl = wnuml, rotated left 1 bit
result2 = wnuml, rotated right 1 bit
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The following instructions

lw $t0, wnuml

lw $tl, wnum2

rol S$t2, S$tO0, S$tl

sw $t2, wans3 # wans3

wnuml, rotated left 1 bit

lw $t0, wnuml

lw $tl, wnum2
ror $t2, $t0, Stl
sw $t2, wans4 # wans3 = wnuml, rotated right 1 bit

For halfword instructions, only the lower 16-bits are used. For the byte instructions,
only the lower 8-bits are used.

To perform the operation, value * 8, it would be possible to shift the number in the
variable one bit for each power of two, which would be three bits in this example.

Assuming the following data declarations:

value: .word 17
answer: .word 0

The following instructions could be used to multiple value by 8.

lw $t0, value
shl $t1, $to, 3
sw $tl, answer # answer = wnuml * 8

The final value in answer would be 17 * 8 or 136.

In the context of an encoded MIPS instruction, the upper 6-bits of a 32-bit word
represent the OP or operation field. If a program was analyzing code, it might be
desirable to isolate these bits for comparison. One way this can be performed is to use a
logical right shift to move the upper six bits into the position of the lower 6-bits.

The instruction:
add $tl, S$t1, 1

will be translated by the assembler into the hex value of 0x2129001.
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Assuming the following data declarations:

instl: .word 0x2129001
instlOpl: .word 0

To mask out the OP field (upper 6-bits) for inst! and place it in the variable instOp1
(lower 6-bits), the following instructions could be used:

lw $t0, instl
shr S$t1, $t0, 26
sw $tl, instoOpl

This can be done in one step since the logical shift will insert all 0's into the newly
vacated bit locations.

5.6 Control Instructions

Program control refers to basic programming structures such as IF statements and
looping. All of the high-level language control structures must be performed with the
limited assembly-language control structures. For example, an IF-THEN-ELSE
statement does not exist as the assembly-language level. Assembly-language provided
an unconditional branch (or jump) and a conditional branch or an IF statement that will
jump to a target label or not jump.

The control instructions refer to unconditional and conditional branching. Branching is
required for basic conditional statements (i.e., IF statements) and looping.

5.6.1 Unconditional Control Instructions

The unconditional instruction provides an unconditional jump to a specific location.

Instruction Description
j <label> Unconditionally branch to the
specified label.

The “b” (branch) may be used instead of the “j” (jump). Both are encoded as the same
instruction (an unconditional jump). An error is generated by QtSpim if the label is not
defined.
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5.6.2 Conditional Control Instructions

The conditional instruction provides a conditional jump based on a comparison. This is
a basic IF statement.

The conditional control instructions include the standard set; branch equal, branch not
equal, branch less than, branch less than or equal, branch greater than, and branch
greater than or equal.

The general format for these basic instructions is as follows:

Instruction Description

beq <Rsrc>, <Src>, <label> | Branch to label if <Rscr> and
<Scr> are equal

bne <Rsrc>, <Src>, <label>| Branch to label if <Rscr> and
<Scr> are not equal

blt <Rsrc>, <Src>, <label>  Branch to label if <Rscr> is less
than <Scr>

ble <Rsrc>, <Src>, <label>  Branch to label if <Rscr> is less
than or equal to <Scr>

bgt <Rsrc>, <Src>, <label> Branch to label if <Rscr> is
greater than <Scr>

bge <Rsrc>, <Src>, <label> | Branch to label if <Rscr> is
greater than or equal to <Scr>

These instructions operate on 32-bit registers (even if byte or halfword values are placed
in the registers).

5.6.3 Example Program, Sum of Squares

The following is an example program to find the sum of squares from 1 to n. For
example, the sum of squares for 10 is as follows:

1°+ 22+ --- +10° = 385
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This example main initializes the n to arbitrary to 10 to match the example.

# Example program to compute the sum of squares.

# Data Declarations

.data
n: .word 10
sumOfSquares: .word O
o
# text/code section
.text
.globl main
main:
$ -
# Compute sum of squares from 1 to n.
lw $t0, n #
1i $t1, 1 # loop index (1 to n)
1i $t2, 0 # sum
sumLoop:
mul S$t3, S$tl1, S$tl # index"2
add $t2, $t2, $t3
add S$tl1, S$t1, 1
ble $tl1, $t0, sumLoop
sw $t2, sumOfSquares
$ ———
# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call

.end main

Page 41



Chapter 5.0 « Instruction Set Overview

Refer to the system services section for information on displaying the final results to the
console.

5.7 Floating-Point Instructions

This section presents a summary of the basic, most common floating-point arithmetic
instructions. The MIPS Instruction Set Appendix presents a more comprehensive list
of the available instructions.

5.7.1 Floating-Point Register Usage

The floating-point instructions are similar to the integer instructions, however the
floating-point register must be used with the floating-point instructions. Specifically,
this means the architecture does not support the use of integer registers for any floating
point arithmetic operations.

When single-precision (32-bit) floating-point operation is performed, the specified 32-
bit floating-point register is used. When a double-precision (64-bit) floating-point
operation is performed, two 32-bit floating-point registers are used; the specified 32-bit
floating-point register and the next numerically sequential register is used by the
instruction. For example, a double-precision operation using $f12 will use
automatically $f12 and $f13.

5.7.2 Floating-Point Data Movement

Floating-point CPU computations are typically performed using floating-point registers.
As such, before computations can be performed, data is typically moved into the
floating-point registers from other floating-point registers or variables (i.e., memory).
When a computation is completed the data might be moved out of the floating-point
register into a variable or another floating-point register.

To support the loading of data from memory into floating-point registers and storing of
data in floating-point registers to memory, there are a series of specialized load and store
instructions. The basic format is the same as the integer operations, however the type is
either “.s” for single-precision 32-bit IEEE floating-point representation or “.d” for
double-precision 64-bit IEEE floating-point representation. More information regarding
the representations can be found in Chapter 2, Data Representation.
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The general forms of the floating-point load and store instructions are as follows:

Instruction Description

l.<type> FRdest, mem Load value from memory location
memory into destination register.

s.<type> FRsrc, mem Store contents of source register
into memory location.

mov.<type> Frdest, FRsrc Copy the contents of source register
into the destination register.

In this case, the floating-point types are “.s” for single-precision and “.d” for double-
precision.

Assuming the following data declarations:

fnuml: .float 3.14
fnum2: .float 0.0
dnuml: .double 6.28
dnum2: .double 0.0

The “.float” directive declares a variable as a 32-bit floating-point value and the
“.double” declares a variable as a 64-bit floating-point variable.

To perform, the basic operations of:

fnum2 = fnuml
dnum2 dnuml

The following instructions :

l.s $f6, fnuml

s.s $£6, fnum2 # fnum2 = fnuml

1.4 $£f6, dnuml

mov.d $£f8, S$f6 # unnecessary use of mov
# just as an example

s.d $£8, dnum2 # dnum2 = dnuml

The two double-precision operation (1.d and mov.d) reference registers $f6 and $f8 but
use registers $f6/$f7 and $£8/$f9 to hold the 64-bit values.
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5.7.3 Integer / Floating-Point Register Data Movement

The arithmetic instructions require either floating point registers or integer registers and
will not allow a combination. In order to move data between integer and floating point
registers, special instructions are required. As noted in Chapter 2, MIPS Architecture
Overview, the floating point operations are performed in a floating-point co-processor.

The general form of the integer and floating-point data movement instructions are as
follows:

Instruction Description

mfcl Rdest, FRsrc Copy the contents from co-
processor 1 (FPU) float register
FRsrc into Rdest integer register.

mfcl.d Rdest, FRsrc Copy the contents from co-
processor 1 (FPU) float registers
FRsrc and FRsrc+1 into integer
registers Rdest and Rdest+1.

mtcl Rsrc, FRdest Copy the contents to co-processor 1
(FPU) float register FRSrc from
Rdest integer register.

mtcl.d Rsrc, FRdest Copy the contents to co-processor 1
(FPU) float registers FRsrc and
FRsrc+1 from integer registers
Rdest and Rdest+1.

Note, the above instructions use a 1 (number one) and not a lower-case letter L.

For example, assuming an integer value is in integer register $s0, to copy the value into
floating-point register $f12, the following instruction could be used.

mtcl $s0, S$f12

To copy the contents of $f12, into an integer register $t1, the following instruction could
be used.

mfcl $tl, S$f12

The value copied has not be converted into a different representation.
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In this example, the integer value in $s0 that was copied into $f12 is still represented as
an integer in two's compliment. As such, the value in $£12 is not ready for any floating-
point arithmetic operations. The representation of the value must be converted (see next
section).

5.7.4 Integer / Floating-Point Conversion Instructions

When data is moved between integer and floating-point registers, the data representation
must be addressed. For example, when moving an integer value from an integer register
into a floating-point register, the data is still represented as an integer value in two's
compliment. Floating-point operations require an appropriate floating point
representation (32-bit or 64-bit). When data is moved between integer and floating-
point registers, a data conversion would typically be required.

The general format for the conversion instructions is as follows:

Instruction Description

cvt.d.s FRdest, FRsrc Convert the 32-bit floating point value
in register FRsrc into a double
precision value and put it in register
FRdest.

cvt.d.w FRdest, FRsrc Convert the 32-bit integer in register
FRsrc into a double precision value and
put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert the 64-bit floating point value
in register FRsrc into a 32-bit floating-
point value and put it in register
FRdest.

cvt.s.w FRdest, FRsrc Convert the 32-bit integer in register
FRsrc into a 32-bit floating-point value
and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert the 64-bit floating-point value
in register FRsrc into a 32-bit integer
value and put it in register FRdest.

Page 45



Chapter 5.0 « Instruction Set Overview

Instruction Description

cvt.w.s FRdest, FRsrc Convert the 32-bit floating-point value
in register FRsrc into a 32-bit integer
value and put it in register FRdest.

Assuming the following data declarations:

iNum: .word 42
fNum: .float 0.0

To convert the integer value in variable iNum1 and place it as a 32-bit floating-point
value in variable fNum1, the following instructions could be used:

1w $t0, iNum
mtcl $t0, Sf6
cvt.s.w $£f8, S$f6
S.s $£8, fNum

This code fragment loads the integer value in variable iNum into $t0, and then copies
the value into $f6. The integer value in $£6 is converted into a 32-bit floating-point
value and placed in $f8. The 32-bit floating-point value is then copied into the fNum1
variable. The conversion instruction could have over-written the $f6 register.

Assuming the following data declarations:

pi: .double 3.14
intPi: .word 0

To convert the 64-bit floating-point value in variable pi and place it as a 32-bit integer
value in variable intPi, the following instructions could be used:

1.4 $£10, pi
cvt.w.d $£f12, $f10
mfcl $tl, $f12
sw $tl, intPi

This code fragment initially loads the 64-bit floating-point value into $f10. The 64-bit
floating-point value in $f10 is converted into a 32-bit integer value and placed in $f12.
The integer value in $f12 is copied into $t1 and then copied into the variable intPi.
Since conversion from floating-point truncates, the final value in intPi is 3.
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5.7.5 Floating-Point Arithmetic Operations

The arithmetic operations include addition, subtraction, multiplication, division,
remainder (remainder after division), logical AND, and logical OR. The general format
for these basic instructions is as follows:

Instruction Description

add<type> FRdest, FRsrc, FRsrc FRdest = FRsrc + FRsrc
sub<type> FRdest, FRsrc, FRsrc FRdest = FRsrc - FRsrc
mul<type> FRdest, FRsrc, FRsrc FRdest = FRsrc * FRsrc
div<type> FRdest, FRsrc, FRsrc FRdest = FRsrc / FRsrc
rem<type> FRdest, FRsrc, FRsrc FRdest = FRsrc % FRsrc

Assuming the following data declarations:

fnuml:
fnum2:
fansl:
fans2:

dnuml:
dnum2:
dansl:
dans2:

To perform, the basic operations of:

fansl =
fans2
dansl
dans2 =

The following instructions:

l.s
l.s
add.s
S.s

.float 6.28318
.float 3.14159
.float 0.0
.float 0.0
.double 42.3
.double 73.6
.double 0.0
.double 0.0

fnuml + fnum2

fnuml * fnum2

dnuml - dnum2

dnuml / dnum2
$f4, fnuml
$f6, fnum2
$f8, S$f4, Sfe6
$£f8, fansl

# fansl = fnuml + fnum2
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mul.s $£10, $f4, $f6

S.s $£10, fans2 # fans2 = fnuml * fnum2
1.4 $f4, fnuml

l.4 $f6, fnum2

sub.d $£f8, S$f4, Sf6

s.d $£f8, fansl # dansl = dnuml - dnum2
div.d $£f10, S$f4, S$f6

s.d $£10, fans2 # dans2 = dnuml / dnum2

For the double-precision instructions, the specified register and the next numerically
sequential register is used. For example, the 1.d instruction sets the $f4 and $£5 32-bit
registers with the 64-bit value.

5.7.6 Example Programs

This section provides some example using the floating-point instructions to perform
some basic calculations.

5.7.6.1 Example Program, Floating-Point Arithmetic

The following is an example program to compute the surface area
and volume of a sphere.

The formulas for the surface area and volume of a sphere are as
follows:

. o 2
surfaceArea = 4.0 * pi * radius

volume = 4%% * radius’

This example main initializes the radius to arbitrary floating-point value.

# Example program to calculate the surface area
# and volume of a sphere given the radius.
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.data
pi: .float 3.14159
fourPtZero: .float 4.0
threePtZero: .float 3.0
radius: .float 17.25
surfaceArea: .float 0.0
volume: .float 0.0
o
# text/code section
.text
.globl main
main:
$ oo
# Compute: (4.0 * pi) which is used for both equations.
l.s $£f2, fourPtZero
l.s $f4, pi
mul.s $f4a, $f2, S$f4 # 4.0 * pi
1l.s $f6, radius # radius

# Calculate surface

# surfaceArea = 4
mul.s $£8,
mul.s S£8,
s.s $£8,

area of a sphere.

.0 * pi * radius”2

$f6, $f6 # radius”2
$fa, $f8 # 4.0 * pi * radius”2
surfaceArea # store final answer

# Calculate volume of a sphere.

# volume =

l.s $£8,

(4.0 * pi / 3.0) * radius”"3

threePtZero

Page 49



Chapter 5.0 « Instruction Set Overview

div.s $f2, $f4, S$f8 # (4.0 * pi / 3.0)
mul.s $£10, $£f2, $f2
mul.s $f10, $£f10, sfeé # radius”3
mul.s $£f12, s$f6, $f10 # 4.0*pi/3.0*radius”"3
S.s $£12, volume # store final answer
$ oo
# Done, terminate program.
1i $v0, 10 # terminate call code
syscall # system call

.end main

Refer to the system services section for information on displaying the final results to the
console.

5.7.6.2 Example Program, Integer / Floating-Point Conversion

The following is an example program to sum an array of integer values and compute the
average as a floating-point value. This requires conversion of 32-bit integer values into
32-bit floating-point values.

# Example program to sum an array of integers
# and compute the float average.

o~
# Data Declarations

.data

iArray: .word 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
length: .word 12

iSum: .word 0

fAve: .float 0.0
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# Text/code section

.text
.globl
main:

# Find the sum

main

la $t0, iArray
lw $tl, length
1i $t2, O

sumLoop:
1w $t3, ($tO0)
add $t2, $t2, S$t3
addu $t0, $to, 4
sub $tl, $tl, 1
bnez $t1l, sumLoop
sw $t2, iSum
mtcl s$t2, sfeé
cvt.s.w $f6, Sf6
1w $t1l, length
mtcl $t1, Sf£8
cvt.s.w $£f8, Sf8
div.s $fl10, $f6, Sf£f8
S.s $£10, fAve

$ o

# Done, terminate program.
1i $vo, 10
syscall

.end main

of the integer numbers.

H=

H=

array starting addr
array length
set sum=0

get iArray(n)
sum = sum+iArray(n)
update iArray addr

save integer sum
move to float reg
cvt to float format
move to float reg

cvt to float format

sum / length

# call code for terminate
# system call
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6.0 Addressing Modes

This chapter provides basic information regarding addressing modes and the associated
address manipulations on the MIPS architecture. The addressing modes are the
supported methods for specifying the value or address of a data item being accessed
(read or written). This might include an actual value, the name of a variable, or the
location in an array.

Since the MIPS architecture, as simulated in the QtSpim simulator, is a 32-bit
architecture, all addresses are words (32-bits).

6.1 Direct Mode

Direct addressing mode is when the register or memory location contains the actual
values.

For example:

lw $t0, varl
lw $tl, var2

Registers and variables $t0, $t1, var1, and var2 are all accessed in direct mode
addressing.

6.2 Immediate Mode

Immediate addressing mode is when the actual value is one of the operands.
For example:

1i $t0, 57
add $tO0, $tO0, 57

The value 57 is immediate mode addressing. The register $t0 is direct mode addressing.
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6.3 Indirection

The ()'s are used to denote an indirect memory access. An indirect memory access
means the CPU will read the provided address and then go to that address to access the
value located there. This involves more work for the CPU than the previously presented
addressing modes (direct and immediate). This is typically how elements are accessed
in a list or array. For example, to get a value from a list of longs:

la $t0, 1st
1w $sl, ($tO0)

The address, in $t0, is a word size (32-bits). Memory is byte addressable. As such, if
the data items in "Ist" (from above) are words, then four add must be added to get the
next element.

For example, the instructions:

add $tO0 $to0, 4
lw  $s2, ($t0)

will get the next word value in array (named Ist in this example).

A form of displacement addressing is allowed. For example, to get the second item
from a list of long sized values:

la $t0, 1st
1w $sl, 4($t0)

The "4" is added to the address before the memory access. However, the register is not
changed. Thus, the location or address being accessed is displaced or temporarily
changed as needed.

6.3.1 Bounds Checking

In a high-level language, the compiler is capable of ensuring that the index for an
element in an array is legal and within the boundary of the array being accessed. Thus,
the compiler can issue an error message and help identify when and where a program is
trying to access beyond the end of an array (e.g., accessing the 110th element of a 100
element array).

This type of bounds checking is not available at the assembly-language level.
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If the assembly-language program attempts to access the 110 element of an array, the
value at that memory location will be returned with no error. Of course, the value
returned is not likely to be useful.

If the memory access attempting to be accessed is outside the general scope of the
program, an exception will be generated. An exception is a run-time error. The QtSpim
simulator will provide the line where the error occurred. For example, attempting to
access a memory location in the reserved section would not be allowed and thus
generate an exception. This could easily occur if the programmer uses a register with a
data item instead of a correct address.

Additionally, no error is generated when a program attempts to access a word (32-bits)
in an array or halfwords (16-bits). In this case two halfwords will be read into the
registers and treated as a single value. Of course, the value will not be correct or useful.

6.4 Examples

This section provides some example using the addressing modes to access arrays and
perform basic calculations.

6.4.1 Example Program, Sum and Average

The following example computes the sum and average for an array integer values. The
values are calculated and saved into memory variables.

# Example to compute the sum and integer average
# for an array of integer values.

e e

# Data Declarations

.data

array: .word i, 3, 5, 71, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

sum: .word 0

average: .word 0
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# text/code section

# Basic approach:

# - loop through the array
# accessing each value
# update sum

# - calculate the average

.text

.globl main
main:

# Loop through the array to calculate sum

la $t0, array # array starting address
1li $tl, O # loop index, i=0
1w $t2, length # length
1i $t3, O # initialize sum=0
sumLoop:
1w $t4, ($tO) # get array[i]
add $t3, $t3, $t4 # sum = sum + array[i]
add S$t1, St1, 1 i = i+l
add $tO0, $tOo, 4 # update array address
blt $tl1, $t2, sumLoop # if i<length, continue
swW $t3, sum # save sum
$ -
# Calculate average
# note, sum and length set in section above.
div $t5, $t3, S$t2 # ave = sum / length
sw $t5, average
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$ ———

# Done, terminate program.
1li $v0o, 10 # call code for terminate
syscall # system call

.end main

This example program does not display the results to the screen. For information
regarding displaying values and strings to output (console), refer to the QtSpim System
Services section.

6.4.2 Example Program, Median

The following example finds the median for a sorted array of values. In this example,
the length is given as always even. As such, the integer median is the integer average
for the two middle values. Specifically, the formula for median is:

(array[length/2] + array| length/2—1])
2

medianEvenOnly =

The 'length/2' notation refers to using division by two to generate the correct index of
the appropriate value from the array. In assembly, we must convert the index into the
offset from the base address (i.e., starting address) of the array. Since the data in this
example is words (i.e., 4 bytes), it will be necessary to multiply by four to convert the
index into an offset. That offset is from the start of the array, so the final address is the
array base address plus the offset.

This requires a series of calculations as demonstrated in the following example.

# Example to find the median of a sorted
# array of integer values of even length.

oo

# Data Declarations

.data

array: .word i, 3, 5, 71, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

Page 57



Chapter 6.0 <« Addressing Modes

Page 58

length: .word 30
median: .word 0
o _
# text/code section
# The median for an even length array is defined as:
# median = ( array[len/2] + array[len/2-1] ) / 2
# Note, the len/2 is the index. Must convert the index
# into the an offset from the base address (of the array.
# Since the data is words (4 bytes), multiple the index
# by four to convert to the offset.
.text
.globl main
main:
la $t0, array # starting addr of array
1w $tl, length value of length
div $t2, S$tl1l, 2 length / 2
mul S$t3, S$t2, 4 cvt index into offset
add $t4, $tO, S$t3 add base addr of array
1w $t5, ($t4) get array[len/2]
sub $t4, $t4, 4 addr of prev value
1w $t6, ($t4) get array[len/2-1]
add $t7, $t6, S$t5 a[len/2] + a[len/2-1]
div $t8, $t7, 2 / 2
sw $t8, median save median
$ oo
# Done, terminate program.
1li $v0o, 10 call code for terminate
syscall system call
.end main
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This example program does not display the results to the screen. For information
regarding displaying values and strings to output (console), refer to the QtSpim System
Services section.

Finding the median for an odd length list is left to the reader as an exercise.
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7.0 Stack

In a computer, a stack is a type of data structure where items are added and them
removed from the stack in reverse order. That is, the most recently added item is the
very first one that is removed. This is often referred to as Last-In, First-Out (LIFO).

A stack is heavily used in programming for the storage of information during procedure
or function calls. The following chapter provides information and examples regarding
procedure and function calls.

Adding an item to a stack is refer to as a push or push operation. Removing an item
from a stack is referred to as a pop or pop operation.

It is generally expected that the reader will be familiar with the general concept of a
stack.

7.1 Stack Example

To demonstrate the usage of the stack, given an array, a = {7, 19, 37}, consider
the operations:

push a[0]
push af[l]
push a[2]

Followed by the operations:

pop al[o0]
pop al[l]
pop a[2]

The initial push will push the 7, followed by the 29, and finally the 37. Since the stack
is last-in, first-out, the first item popped off the stack will be the last item pushed, or 37
in this example. The 37 is placed in the first element of the array (over-writing the 7).
As this continues, the order of the array elements is reversed.
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The following diagram shows the progress and the results.

stack stack stack stack stack stack
37
19 19 19
7 7 7 7 7 empty
push push push pop a[0] pop all] pop al2]
a[o0] af[l] a[2]
a = {7, a= {7, a= {7, a = {37, a = {37, a = {37,
19, 37} 19, 37} 19, 37} 19, 37} 19, 37} 19, 7}

The following sections provide more detail regarding the implementation and applicable
instructions.

7.2 Stack Implementation

The current top of the stack is pointed to by the $sp register. The stack grows
downward in memory and it is generally expected that all items pushed and/or popped
should be of word size (32-bit).

There is no push or pop instruction. Instead, you must perform the push and pop
operations manually.

While it is possible to push/pop items of various sizes (byte, halfword, etc.) it is not
recommended. For such operations, it is recommended to use the entire word (4-bytes).

7.3 Push

For example, a push would subtract the $sp by 4 bytes and then copy the operand to that
location (in that order). The instructions to push $t9 would be implemented as follows:

subu $sp, S$sp, 4
sw $t9, (S$sp)

Which will place the contents of the $t9 register at the top of the stack.
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7.4 Pop

A pop would copy the operand and then add 4 bytes (in that order). To pop $t2, the
instructions would be as follows:

1w $t2, ($sp)
addu $sp, S$sp, 4

Which will place the contents of the $t9 register at the top of the stack.

7.5 Multiple push's/pop's

The preferred method of performing multiple pushes or pops is to perform the $sp
adjustment only once. For example, to push registers, $s0, $s1, and $s2:

subu S$sp, $sp, 12
sw $s0, ($sp)
sw $sl, 4(S$Ssp)
sw $s2, 8(S$sp)

And, the commands to pop registers, $s0, $s1, and $s2 as as follows:

lw $s0, ($sp)
1w $sl, 4(S$sp)
1w $s2, 8(Ssp)
addu S$sp, S$sp, 12

By performing the stack adjustment only once, it is more efficient for the architecture to
execute.

7.6 Example Program, Stack Usage

The following example uses a stack to reverse the elements in an array. The program
will push all elements of the array to the stack and the pop all elements back into the
array. This will place the elements back into the array in reverse order based on the
basic functionality of the stack.

# Example to reverse values in an array
# by using the stack.
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o

# Data Declarations

.data

array: .word i, 3, 5, 7, 9, 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29, 31, 33, 35, 37, 39
.word 41, 43, 45, 47, 49, 51, 53, 55, 57, 59

length: .word 30

o

# Text/code section

# Basic approach:
# - loop to push each element onto the stack
# - loop to pop each element off the stack
# Final result is all elements reversed.
.text
.globl main
main:
$ ———c
# Loop to read items from array and push onto stack and
place.
la $t0, array # array starting address
1li $tl, O # loop index, i=0
1w $t2, length # length
pushLoop:
1w $t4, ($t0) # get array[i]
subu $sp, $sp, 4 # push array[i]

sw $t4, ($sp)

add S$tl1, S$t1, 1 # i = i+l
add $tO, S$to, 4 # update array address

Page 64



blt $tl, $t2, pushLoop
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if i<length, continue

# Loop to pop items from stack and write into array.

la $t0, array
1i $tl1, O
1w $t2, length

popLoop:
lw $t4, ($sp)
addu $sp, S$sp, 4
sw $t4, ($tO0)

add S$t1, $tl1, 1
add $t0, $to0, 4

blt $tl1, $t2, popLoop

# Done, terminate program.

1i $v0, 10
syscall
.end main

=

array starting address
loop index, i=0
length (redundant line)

pop array[i]
set array[i]

i =i+l
update array address

if i<length, continue

call code for terminate
system call

It must be noted that there are easier ways to reverse a set of numbers, but they would

not help demonstrate stack operations.
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8.0 Procedures/Functions

This chapter provides and overview of using assembly language procedures/functions.
In C/C++ a procedure is referred to as a void function. Other languages refer to such
functions as procedures. A function returns a single value in a more mathematical sense.
C/C++ refers to functions as value returning functions.

With regard to calling a procedure/function, there are two primary activities; linkage and
argument transmission. Each are explained in the following sections. Additionally,
using procedures/functions in MIPS assembly assembly language requires the use of a
series of special purpose registers. These special purpose registers are part of the basic
integer register set but have a dedicated purpose based upon standardized and
conventional usage.

8.1 MIPS Calling Conventions

When writing MIPS assembly-language procedures, the MIPS standard calling
conventions should be utilized. This ensures that the code can more effectively re-used,
can interact with other compiler-generated code or mixed-language programs, and
utilize high-level language libraries.

The calling conventions address register usage, argument passing and register
preservation.

There are two categories of procedures as follows:

* Non-leaf procedures
o These procedures call other procedures.
* Leaf procedures
o These procedures do not other procedures (or themselves).

The standard calling convention specified actions for the caller (routine that is calling)
and the callee (routine that is being called). The specifics requirements for each are
detailed in the following sections.
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8.2 Procedure Format

The basic format for a procedure declaration, uses the a global declaration directive
(".globl <procName>"), an entry point directive (".ent <procName>"), and an entry label
for the procedure. Generally, a procedure declaration is terminated with a end directive
(“.end <procName>”). The general syntax is as follows:

.globl procedureName
.ent procedureName
procedureName:

# code goes here
.end procedureName

The use of the ".end <procName> directive is optional in the QtSpim simulator.

8.3 Caller Conventions

The calling convention addresses specific requirements for the caller or routine that is
calling a procedure.

* The calling procedures is expected to save any non-preserved registers ($a0 -
$a3, $t0 - $t9, $v0, $v1, $f0 - $f10 and $£16 - $£18) that are required after the
call is completed.

* The calling procedure should pass all arguments.

o The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if
float single or double precision).

o The second argument is passed in either $al or $f14 ($al if integer or $£14 if
float single or double precision).

o The third argument is passed in $a2 (integer only).

o If the third argument is float, it must be passed on the stack.

o The fourth argument is passed in $a3 (integer only).

o If the fourth argument is float, it must be passed on the stack.

Remaining arguments are passed on the stack. Arguments on the stack should be placed
on the stack in reverse order. Call by reference arguments load address (la instruction)
and call by value load the value.
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Calling procedure should use the "jal <proc>" instruction.

Upon completion of the procedure, the caller procedure must restore any saved non-
preserved registers and adjust the stack point ($sp) as necessary if any arguments were
passed on the stack.

Note, for floating-point arguments appearing in registers you must allocate a pair of
registers (even if it's a single precision argument) that start with an even register.

8.4 Linkage

The term linkage refers to the basic process of getting to a procedure and getting back to
the correct location in the calling routine. This does not include argument transmission,
which is addressed in the next section.

The basic linkage operation uses the jal and jr instructions. Both instructions utilize the
$ra register. This register is set to the return address as part of the procedure call.

The call to a procedure/function requires the procedure/function name, generically
labeled as <procName>, as follows:

jal <procName>

The jal, or jump and link, instruction, will copy the $pc into the $ra register and jump
to the procedure <procName>. Recall that the $pc register points to the next instruction
to be executed. That will be the instruction immediately after the call, which is the
correct place to return to when the procedure/function has completed.

If the procedure/function does not call any other procedures/functions, nothing
additional is required with regard to the $ra register.

A procedure that does not call another procedure is referred to as a "leaf procedure". A
procedure that calls another procedure is referred to as a "non-leaf procedure".

The return from procedure is as follows:

jr $ra

If the procedure/function calls yet another procedure/function, the $ra must be
preserved. Since $ra contains the return address, it will be changed when the
procedure/function calls the next procedure/function. As such, it must be saved and
restored from the stack in the calling procedure. This is typically performed only once
at the beginning and then at the end of the procedure (for non-leaf procedures).
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Refer to the example programs for a more detailed series of examples that demonstrate
the linkage.

8.5 Argument Transmission

Based on the context, parameters may be transmitted to procedures/functions as either
values or addresses. These basic approaches are implemented in high-level languages.

The basic argument transmission is accomplished via a combination of registers and the
stack.

8.5.1 Call-by-Value

Call-by-value involves passing a copy of the information being passed to the procedure
or function. As such, the original value can not be altered.

8.5.2 Call-by-Reference

Call-by-reference involves passing the address of the variables. Call-by-reference is
used when passing arrays or when passing variables that will be altered or set by the
procedure or function.

8.5.3 Argument Transmission Conventions

The basic argument transmission is accomplished via a combination of registers and the
stack.

Integer arguments can be passed in registers $a0, $al, $a2, and $a3 and floating-point
values passed in $f12 and $£14 (single or double precision floating point).

* The first argument is passed in either $a0 or $f12 ($a0 if integer or $f12 if float
single or double precision).

* The second argument is passed in either $al or $f14 ($al if integer or $f14 if
float single or double precision).

* The third argument is passed in $a2 (integer only).

» If the third argument is float, it must be passed on the stack.

* The fourth argument is passed in $a3 (integer only).

* If the fourth argument is float, it must be passed on the stack.
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If the first argument is integer, $a0 is used and $£12 should not be used at all. If the first
argument is floating-point value, $£12 is used and $a0 is not used at all. Any additional
arguments are passed on the stack. The following table shows the argument order and
register allocation.

1st 2nd 3rd 4th 5th Nth

integer $a0 $al $a2 $a3 | stack | stack
or or or or
floating- $f12 | $f14 | stack | stack | stack | stack

point value

Recall that addresses are integers, even when pointing to floating-point values. As such,
addresses are passed in integer registers.

8.6 Function Results
A function is expected to return a result (i.e., value returning function).

Integer registers $v0 or $v1/$v0 are used to return integers values from
function/procedure calls. Floating point registers $f0 and $f2 are used to return floating
point values from function/procedures.

8.7 Registers Preservation Conventions

The MIPS calling convention requires that only specific registers (not all) be saved
across procedure calls.

* Integer registers $s0 - $s7 must be saved by the procedure.
* Floating point registers $f20 - $£30 must be saved the procedure.

When writing a procedure, this will require that the registers $s0 - $s7 or $£20 - $£30
(single or double precision) be pushed and popped from the stack if those registers are
utilized/changed. When calling a procedure, the main routine must be written so that
any values required across procedure calls be placed in register $s0 - $s7 or $£20 - $£30
(single or double precision).

Integer registers $t0 - $t9 and floating point registers $f4 - $f10 and $f16 - $f18 (single
or double precision) are used to hold temporary quantities that do not need to be
preserved across procedure calls.
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8.8 Miscellaneous Register Usage

Registers $at, $k0, and $k1 are reserved for the assembler and operating system and
should not be used by programs. Register $fp is used to point to the procedure call
frame on the stack. This can be used when arguments are passed on the stack.

Register $gp is used as a global point (to point to globally accessible data areas). This
register is not typically used when writing assembly programs directly.

8.9 Summary, Callee Conventions

The calling convention addresses specific requirements for the callee or routine that is
being called from another procedure (which includes the main routine).

* Push any altered "saved" registers on the stack.
o Specifically, this includes $s0 - $s7, $£20 - $£30, $ra, $fp, or $gp.
o If the procedure is a non-leaf procedure, $ra must be saved.
o If $fp is altered, $fp must be saved which is required when arguments are
passed on the stack
o Space for local variables should be created on the stack for stack dynamic
local variables.
* Note, when altering the $sp register, it should be done in a single operation
(instead of a series).
» If arguments are passed on the stack, $fp should be set as follows
o $fp = $sp + (frame size)
o This will set $fp pointing to the first argument passed on the stack.

The procedure can access first 4 integer arguments in registers $a0 - $a3 and the first
two float registers $f12 - $f14.

Arguments passed on the stack can be accessed using $fp. The procedure should place
returned values (if any) into $v0 and $v1.

* Restore saved registers
o Includes $s0 - $s7, $fp, $ra, $gp if they were pushed.
o Return to the calling procedure via the jr $ra instruction.

The procedures example section provides a series of example procedures and functions
including register usage and argument transmission.
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8.10 Call Frame

The procedure/function call frame or activation record is what the information placed on
the stack is called. As noted in the previous sections, the procedure call frame includes
passed parameters (if any) and the preserved registers. In addition, space for the
procedures local variables (if any) is allocated on the stack.

A general overview of the call frame is show as follows:

Call Arguments
Frame
Preserved
Registers

Local Variables

Each part of the call frame may be a different size based on how many arguments are
passed (if any), which registers must be preserved (if any), or the amount and size of the
local variables (if any).

8.10.1.1 Stack Dynamic Local Variables

The local variables, also referred to as stack dynamic local variables, are typically
allocated by the compiler and assigned to stack locations. This allows a more efficient
use of memory for high-level languages. This can be very important in large programs.

For example, assume there are 10 procedures each with a locally declared 100,000
element array of integers. Since each integer typically requires 4-bytes, this would
mean 400,000 bytes for each procedure with a combined total of 4,000,000 bytes (or
about ~4MB) for all ten procedures.

For the standard method of stack dynamic local variables, each array is only allocated
when the procedure is active (i.e., being executed). If none of the procedures is called,
none of the memory is allocated. If only two of the arrays are active at any given time,
only 800,000 bytes are allocated at any given time.
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However, if the arrays were to be declared statically (i.e., not the standard local
declaration), the ~4MB of memory allocated even if none of the procedures is ever
called. This can lead to excessive memory usage which can slow a program down.

8.11 Procedure Examples

This section presents a series of example procedures of varying complexity.

8.11.1 Example Program, Power Function

This following is a very simple example function call. The example includes a simple
main procedure and a simple function that computes x” (i.e., x to the y power). The
high-level language call, shown in C/C++ here, would be:

answer = power(x, V);

Where x and y are passed by value and the result return to the variable answer. The
main passes the arguments by value and receives the result in $vO0 (as per the
convention). The main then saves the result into the variable answer.

# Example function to demonstrate calling conventions
# Function computes power (i.e., x to y power).

o
# Data Declarations

.data

X: .word 3

y: .word 5

answer: .word 0

 —

# Main routine.
# Call simple procedure two add two numbers.

.text

.globl main
.ent main
main:
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1w $a0, x # pass arg's to function
lw $al, y

jal power

sw $v0, answer

1i $vo, 10

syscall # terminate program
.end main
o
# Function to find and return x"y
$ ———c
# Arguments
# $a0 — x
# Sal — y
# Returns
# $v0 - x"y
.globl power
.ent power
power:
1i $vo, 1
1i $to, O
powLoop:

mul $vO0, S$vO0, $a0
add $tO, S$to, 1
blt $t0, S$al, powLoop

jr S$ra
.end power

Refer to the next section for a more complex example.

8.11.2 Example program, Summation Function

This following is an example procedure call.
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# Example function to demonstrate calling conventions.
# Simple function to sum six arguments.

# Data Declarations

.data

numl:
num2 :
num3:
numé:
num5:
numeé :
sum:

H= = = 3

.text

.globl

.ent main

main:
lw
lw
lw
lw
lw
lw
subu
sw
sw
jal
sw
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.word
.word
.word
.word
.word
.word
.word

Main routine.
Call function to add six numbers.
First 4 arguments are passed in $a0-$a3.
Next 2 arguments are passed on the stack.

main

$ao,
$al,
s$az,
s$a3,
$to,
$t1,
$sp,
$to,
$t1,

addem

$vo,

O Ul WU WU W

numl
num2
num3
numé
numb5
numeé
$sp, 8
($sp)
4($sp)

sum

# pass arg's and procedure



addu $sp, $sp, 8
1i $v0,10
syscall

.end main
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# clear stack

# terminate

Sv0 — numl+num2+num3+numé4+num5+numé

H= H= H= H= H*

# Example function to add 6 numbers

$ ———

# Arguments

# $a0 - numl

# $al - num2

# $a2 - num3

# $a3 - numé

# ($fp) - numb5

# 4($fp) - numé6

# Returns

#

.globl addem

.ent addem

addem:
subu $sp, S$sp, 4
sw $fp, ($sp)
addu $fp, S$sp, 4

$ o

# Perform additions.
1i $vo, O
add $v0, S$v0 $a0
add $v0, S$v0 $al
add $v0o, $vO0 $a2
add $v0o, $vO0 $a3
1w $to, (sfp)
add $v0, S$SvO0 $tO

preserve registers

set frame pointer

numl
num2
num3
numé
num5
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1w $t0, 4(sfp) # numé
add $v0, $vO0 $tO
$ o
# Restore registers.
1w $fp, ($sp)
addu S$sp, S$sp, 4
jr Sra

.end addem

Refer to the next section for a more complex example.

8.11.3 Example Program, Pythagorean Theorem Procedure

The following is an example of a procedure that calls another function.
Given the a and b sides of a right triangle, the ¢ side can be computed as
follows:

cSide = + aSide® + bSide’

This example program will call a procedure to compute the c sides of a

series of right triangles. The a sides and b sides are stored in an arrays, a
aSides[] and bSides[] and results stored into an array, cSides[]. The procedure will also
compute the minimum, maximum, sum, and average of the cSides[] values. All values
are integers. In order to compute the integer square root, a iSqrt() function is used. The
iSqrt() function uses a simplified version of Newtons method.

# Example program to calculate the cSide for each
# right triangle in a series of right triangles

# given the aSides and bSides using the

# Pythagorean theorem.

# Pythagorean theorem:

# cSide = sqgrt ( aSide”2 + bSide"2 )

# Provides examples of MIPS procedure calling.
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# Data Declarations

.data

aSides: .word 19, 17, 15, 13, 11, 19, 17, 15, 13, 11

.word 12, 14, 16, 18, 10
bSides: .word 34, 32, 31, 35, 34, 33, 32, 37, 38, 39
.word 32, 30, 36, 38, 30

cSides: .space 60

length: .word 15

min: .word 0

max: .word 0

sum: .word O

ave: .word O

o

# text/code section

# For example

.text

.globl main

.ent main

main:

$ oo

# Main program calls the cSidesStats routine.

# The HLL call is as follows:

# cSidesStats(aSides, bSides, cSides, length, min,

# max, sum, ave)

# Note:

# The arrays are passed by reference

# The length is passed by value

# The min, max, sum, and ave are passed by reference.
la $a0, aSides # address of array
la $al, bSides # address of array
la $a2, cSides # address of array
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1w $a3, length # value of length

la $t0, min
la $tl, max
la $t2, sum
la $t3, ave

address for min
address for max
address for sum
address for ave

H= H= H= HF

subu S$sp, S$sp, 16

sw $t0, (S$sp) # push addresses
sw $tl, 4($sp)

sw $t2, 8(S$sp)

sw $t3, 12($sp)

jal cSidesStats # call routine
addu S$sp, S$sp, 16 # clear arguments
$ oo
# Done, terminate program.
1i $vo, 10 # code for terminate
syscall # system call
.end main
o
# Procedure to calculate the cSides[] for each right
# triangle in a series of right triangles given the
# aSides[] and bSides[] using the Pythagorean theorem.
# Pythagorean theorem formula:
# cSides[n] = sqrt ( aSides[n]”2 + bSides[n]"2 )

# Also finds and returns the minimum, maximum, sum,
# and average for the cSides.

# Uses the iSqrt() routine to find the integer
# square root of an integer.

# Arguments:
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$a0 address of aSides][]
Sal address of bSides][]
$a2 - address of cSides][]
$a3 - list length

($fp) - addr of min
4($fp) - addr of max
8($fp) - addr of sum
12($fp) - addr of ave

H= = o = = H S

Returns (via passed addresses):
cSides|[]
min
max
sum
ave

.globl cSidesStats
.ent cSidesStats
cSidesStats:
subu $sp, $sp, 20 # preserve registers
sw $s0, 0($sp)
sw $sl, 4(S$sp)
swW $s2, 8($sp)
sw $s3, 12($sp)
sw  $fp, 16($sp)
swW Sra, 20(S$sp)

addu $fp, S$sp, 20 # set frame pointer

# Loop to calculate cSides|[]
# Note, must use $s<n> registers due to iSqrt() call

address of aSides
address of bSides
address of cSides
index = 0

move $s0, Sa0
move $sl, Sal
move $s2, $a2
1i $s3, O

= H= H= FHF

cSidesLoop:
1w $t0, ($s0) # get aSides[n]
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mul $t0, $t0, $tO # aSides[n]"2

1w $tl, (S$sl) # get bSides[n]

mul S$t1, S$tl, $ti1 # bSides[n]"2

add $a0, $tO0, S$tl

jal isqrt # call isqrt()

sSwW $v0, ($s2) # save to cSides[n]

addu $s0, $s0, 4 # update aSides addr
addu $sl, S$sl, 4 # update bSides addr
addu $s2, $s2, 4 # update cSides addr
addu $s3, $s3, 1 # index++

blt $s3, $a3, cSidesLoop # if indx<len, loop

# Loop to find minimum, maximum, and sum.

move $s2, S$a2 # strt addr of cSides
1i $t0, O # index = 0
1w $tl, ($s2) # min = cSides[0]
1w $t2, ($s2) # max = cSides[0]
1i $t3, O # sum = 0
statsLoop:
1w $ta, ($s2) # get cSides[n]
bge $t4, $tl, notNewMin # if cSides[n] >=
# item -> skip
move S$tl, S$t4 # set new min value
notNewMin:
ble $t4, $t2, notNewMax # if cSides[n] <=
# item -> skip
move S$t2, S$t4 # set new max value
notNewMax:
add $t3, S$t3, st4 # sum += cSides[n]
addu $s2, $s2, 4 # update cSides addr
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$t0, $to, 1 # index++
$t0, $a3, statsLoop # if indx<len
$t5, ($fp) # get address
$tl, ($t5) # save min
$t5, 4($fp) # get address
$t2, ($t5) # save max
$t5, 8($fp) # get address
$t3, ($thH) # save sum
$t0, $t3, $a3 # ave = sum /
$t5, 12($fp) # get address
$t0, ($t5H) # save ave

-> loop

of min

of max

of sum

len

of ave

Done, restore registers and return to calling routine.

lw
addu
jr

$s0, 0($sp)
$sl, 4($sp)
$s2, 8($sp)
$s3, 12($sp)
$fp, 16($sp)
Sra, 20(S$sp)
$sp, $sp, 20
Sra

.end cSidesStats

Function to computer integer square root for
an integer value.

Uses a
x:
iter

simplified version of Newtons method.
N

ate 20 times:
x' = (x + N/x) / 2
X = x'
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$ o
# Arguments
# $a0 - N
# Returns
# $v0 - integer square root of N
.globl isqrt
.ent isqrt
isSqrt:
move S$vO, $a0 $# $t0 = x =N
1i $t0, O # counter
sqrLoop:
div $tl1, S$a0, $vO # N/x
add $vO0, S$tl1l, $voO # x + N/x
div $v0, $vO, 2 # (x + N/x)/2
add $t0, $tO0, 1
blt $t0, 20, sqrLoop
jr Sra
.end iSqrt

This example uses a simplified version of Newtons method. Further improvements are
left to the reader as an exercise.
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9.0 QtSpim System Service Calls

The operating system must provide some basic services for functions that a user
program can not easily perform on its own. Some key examples include input and
output operations. These functions are typically referred to as system services. The
QtSpim simulator provides a series of operating system like services by using a syscall
instruction.

To request a specific service from the QtSpim simulator, the 'call code’ is loaded in the
$v0 register. Based on the specific system service being requested, additional
information may be needed which is loaded in the argument registers (as noted in the
Procedures/Functions section).

9.1 Supported QtSpim System Services

A list of the supported system services are listed in the below table. A series of
examples is provided in the following sections.

Service Name Call | Input Output
Code

Print Integer (32-bit) | 1 |$a0 — integer to be printed

Print Float (32-bit) 2 | $f12 - 32-bit floating-point
value to be printed

Print Double (64-bit)| 3 |$f12 — 64-bit floating-point
value to be printed

Print String 4 |$a0 — starting address of
NULL terminated string to be
printed
Read Integer (32-bit) | 5 $v0 — 32-bit integer
entered by user
Read Float (32-bit) 6 $f0 — 32-bit floating-
point value entered by user
Read Double (64- 7 $f0 — 64-bit floating-
bit) point value entered by user
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Read String 8 |$a0 — starting address of
buffer (of where to store
character entered by user)
$al — length of buffer

Allocate Memory 9 |$a0 — number of bytes to $v0 — starting address of
allocate allocated memory

Terminate 10

Print Character 11 |$a0 — character to be printed

Read Character 12 $v0 — character entered

by user

File Open 13 |$a0 — file name string, $v0 — file descriptor
NULL terminated
$al — access flags
$a2 — file mode, (UNIX
style)

File Read 14 |$a0 - file descriptor $v0 — number of bytes
$al — buffer starting address |actually read from file (-1
$a2 — number of bytes to = error, 0 = end of file)
read

File Write 15 |$a0 - file descriptor $v0 — number of bytes
$al — buffer starting address |actually written to file (-1
$a2 — number of bytes to = error, 0 = end of file)
read

File Close 16 |$a0 — file descriptor

The file open access flags are defined as follows:

Read = 0x0, Write
0x100, Truncate = 0x200, Append = 0x8
0x4000, Binary = 0x8000

OR Create
OR Text =

0x1l, Read/Write = 0x2

For example, for a file read operation the 0x0 would be selected. For a file write
operation, the 0x1 would be selected.
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9.2 QtSpim System Services Examples
This section provides a series of examples using system service calls.

The system service calls follow the standard calling convention in that the temporary
registers ($t0 - $t9) may be altered and the saved registers ($s0 - $s7, $fp, $ra) will be
preserved. As such, if a series of values is being printed in a loop, it saved register
would be required for the loop counter and the current array address/index.

9.2.1 Example Program, Display String and Integer

The following code provides an example of how to display a string and an integer.

# Example program to display a string and an integer.
# Demonstrates use of QtSpim system service calls.

oo
# Data Declarations
.data
hdr: .ascii "Example\n"
.asciiz "The meaning of life is: "
number: .word 42
oo
# text/code section
.text
.globl main
main:
la $a0, hdr # addr of NULL terminated string
1i $vo, 4 # call code for print string
syscall # system call
1i $vo, 1 # call code for print integer
lw $a0, number # value for integer to print

syscall # system call

# Done, terminate program.
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1i $vo, 10 # call code for terminate
syscall # system call
.end main

Note, in this example, the string definition ensures the NULL termination as required by
the system service.

The output for the example would be displayed to the QtSpim console window. For
example,

Console

Example
The meaning of life is: 42

The console window can be display or hidden from the Windows menu (on the top bar).

9.2.2 Example Program, Read Integer

The following code provides an example of how to display a prompt string, read an
integer value, square that integer value, and display the final result.

# Example program to display an array.
# Demonstrates use of QtSpim system service calls.

B o o
# Data Declarations
.data
hdr: .ascii "Squaring Example\n"
.asciiz "Enter Value: "
ansMsg: .asciiz "Value Squared: "
value: .word 0
B o o

# text/code section
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$v0o, S$vO
value

4
ansMsg

value
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H= H

H= H

+=

# Done, terminate program.

.text

.globl main

main:
1li $vo,
la $ao0,
syscall
1li $vo,
syscall
mul $tO,
sw $to,
1li $vo,
la $ao0,
syscall
1li $vo,
lw $ao0,
syscall

$ o
1i $vo,
syscall

.end main

10

call code for print string
addr of NULL terminated string
system call

call code for read integer
system call (response in $vO0)

square answer
save to variable

call code for print string
addr of NULL terminated string
system call

call code for print integer
value for integer to print
system call

call code for terminate
system call

The output for the example would be displayed to the QtSpim console window. For

example,

Console

Squaring Example

Enter Value: 12

Value Squared: 144
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Note, the default console window size will typically be larger than what is shown above.

9.2.3 Example Program, Display Array

The following code provides an example of how to display an array. In this example, an
array of numbers is displayed to the screen five number per line (arbitrarily chosen) to
make the output appear more pleasing.

Since the system service call is utilized for the print function, the saved register must be
used. Refer to the Procedures/Functions section for additional information regarding the
MIPS calling conventions.

# Example program to display an array.
# Demonstrates use of QtSpim system service calls.

o .
# Data Declarations
.data
hdr: .ascii "Array Values\n"
.asciiz N e e \n\n"
spaces: .asciiz " "
newLine: .asciiz "\n"
array: .word 11, 13, 15, 17, 19
.word 21, 23, 25, 27, 29
.word 31, 33, 35, 37, 39
.word 41, 43, 45, 47
length: .word 19
B o o
# text/code section
.text
.globl main
main:
1i $vo, 4 # print header string
la $a0, hdr
syscall
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la $s0, array
1li $sl, O
1w $s2, length

printLoop:

1i $vo, 1 # call code for print
integer

lw $a0, ($s0) # get array[i]

syscall # system call

1li $vo, 4 # print spaces

la $a0, spaces

syscall

addu $s0, $s0, 4 # update addr (next word)

add $sl, S$sl, 1 # increment counter

rem $tO, $sl, 5
bnez $t0, skipNewLine

1i $vo, 4 # print new line
la $a0, newLine
syscall

skipNewLine:
bne $sl, $s2, printLoop # if cnter<len -> loop

$ o

# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call

.end main

The output for the example would be displayed to the QtSpim console window.
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For example,

Array Values

11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47

The example codes does not align the values (when printed). The values above appear
aligned only since they are all the same size.
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10.0 Multi-dimension Array Implementation

This chapter provides a summary of the implementation of multiple dimension array as
viewed from assembly language.

Memory is inherently a single dimension entity. As such, multi-dimension array is
implemented as sets of single dimension array. There are two primary ways this can be
performed; row major and column major. Each is explained in subsequent sections.

To simplify the explanation, this section focuses on two-dimensional arrays. The
general process extents to high dimensions.

10.1 High-Level Language View

Multi-Dimension arrays are sometimes used in high level languages. For example, in
C/C++, the declaration of: int arr [3][4] would declare an array as follows:

arr[2][0] | arr[2][1] | arr[2][2] | arr[2][3]

arr[1][0] | arr[1][1] | arr[1][2] | arr[1][3]

arr | arr[0][0] |arr[O][1] | arr[O][2] | arr[O][3]

It is expected that the reader is generally familiar with the high-level language use of
two-dimensional arrays.

Page 93



Chapter 10.0 <« Multi-dimension Array Implementation

10.2 Row-Major

Row-major assigns each row as a single dimension array in memory, one row after the
next until all rows are in memory.

=
=

arr[2][3]
arr[2][2]
arr[2][1]
arr[2][0]
arr[1][3]
arr[1][2]
arr[1][1]
arr[1][0]
arr[01[3]
arr[0][2]
arr[0][1]
arr[0][0]

=
o

arr

Ol N W Ul O| N0 ©

The formula to convert two-dimensional array indexes (row, column) into a single
dimension, row-major memory offset is as follows:

addr = baseAddr + (rowIndex * rowSize + colIndex) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the
data in bytes, and rowSize is the dimension or number of the rows in the array. In this
example, the number of columns in the array is 4 (from the previous high-level language
declaration).

For example, to access the arr[1][2] element (labeled '6' in the above diagram),
assuming the array is composed of 32-bit sized elements it would be:
address = arr + (1 * 4 + 2) * 4 = arr + (4 + 2) * 4
= arr + 6 * 4 = arr + 24

Which generates the correct, final address.
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10.3 Column-Major

Column-major assigns each column as a single dimension array in memory, one column
after the next until all rows are in memory.

=
=

arr[2][3]
arr[1][3]
arr[0][3]
arr[2][2]
arr[1][2]
arr[0][2]
arr[2][1]
arr[1][1]
arr[0][1]
arr[2][0]
arr[1][0]
arr[0][0]

=
o

arr

11
10

w | O

v

Ol N W Ul O| N0 ©

v

The formula to convert two-dimensional array indexes (row, column) into a single
dimension, column-major memory offset is as follows:

addr = baseAddr + (colIndex * colSize + rowIndex) * dataSize

Where the base address is the starting address of the array, dataSize is the size of the
data in bytes, and colSize is the dimension or number of the columns in the array. In this
example, the number of rows in the array is 3 (from the previous high-level language
declaration).

For example, to access the arr[1][2] element (labeled '6' in the above diagram),
assuming the array is composed of 32-bit sized elements it would be:
address = arr + (2 * 3 + 1) * 4 = arr + (6 + 1) * 4
= arr + 7 * 4 = arr + 28

Which generates the correct, final address.
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10.4 Example Program, Matrix Diagonal Summation

The following code provides an example of how to access elements in a two-
dimensional array. This example adds the elements on the diagonal of a two-
dimensional array.

For example, given the logical view of a five-by-five square matrix:

11 | 12 | 13 | 14 | 15
16 | 17 1 18 | 19 | 20
21 | 22 | 23 | 24 | 25
26 | 27 | 28 | 29 | 30
31 | 32 | 33| 34 | 35

The main diagonal contains the numbers, 11, 17, 23, 29, and 35.

# Example program to compute the sum of diagonal
# in a square two-dimensional array
# Demonstrates multi-dimension array indexing.
# Assumes row-major ordering.
oo
# Data Declarations
.data
mdArray: .word 11, 12, 13, 14, 15
.word 16, 17, 18, 19, 20
.word 21, 22, 23, 24, 25
.word 26, 27, 28, 29, 30
.word 31, 32, 33, 34, 35
size: .word 5
dSum: .word 0
DATASIZE = 4 # 4 bytes for words

Page 96



Chapter 10.0 » Multi-dimension Array Implementation

finalMsg: .ascii "Two-Dimensional Diagonal"
.ascii "Summation\n\n"
.asciiz "Diagonal Sum = "
B o o
# Text/code section
.text
.globl main
main:
$
# call function to sum the diagonal
# (of square two-dimensional array)
la $a0, mdArray # base address of array
lw $al, size # array size
jal diagSummer
sw $v0, dSum
$

# Display final result.

1i $vo, 4
la $a0, finalMsg
syscall

1i $vo, 1
1w $a0, dSum
syscall

# Done, terminate program.

1i $vo, 10
syscall

.end main

# print prompt string

# print integer

# call code for terminate
# system call
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# Simple function to sum the diagonals of a
# square two-dimensional array.

# Approach
# loop i = 0 to len-1
# sum = sum + mdArray[i][i]
# Note, for two-dimensional array:
# addr = baseAddr+(rowIndex*colSize+colIndex) * dataSize
# Since the two-dimensional array is given as square, the
# row and column dimensions are the same (i.e., size).
$ oo
# Arguments
# $a0 - array base address
# $al - size (of square two-dimension array)
# Returns
# $v0 - sum of diagonals
.globl diagSummer
.ent diagSummer
diagSummer:
1i $vo, O # sum=0
1i $tl, O # loop index, i=0
diagSumlLoop:

mul $t3, S$tl1l, Sal # (rowIndex * colSize

add $t3, S$t3, S$t1l # + colIndex)
# note, rowIndex=colIndex

mul S$t3, $t3, DATASIZE # * dataSize

add $t4, $a0, S$t3 # + base address

1w $t5, ($t4) # get mdArray[i][i]

add $vO0, $vO, S$t5 # sum = sum+mdArray[i][i]
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add $t1, $t1, 1 $#i=1i+1
blt $tl1, S$al, diagSumLoop
# Done, return to calling routine.

jr Sra
.end diagSummer

While not mathematically useful, this does demonstrate how elements in a two-
dimensional array.
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11.0 Recursion

The Google search result for recursion, shows Recursion, did you mean recursion?

Recursion is the idea that a function may call itself (which is the basis for the joke).
Recursion is a powerful general-purpose programming technique and is used for some
important applications including searching and sorting.

Recursion can be very confusing in its simplicity. The simple examples in this section
will not be enough in themselves for the reader to obtain recursive enlightenment. The
goal of this section is to provide some insight into the underlying mechanisms that
support recursion. The simple examples here which are used introduce recursion are
meant to help demonstrate the form and structure for recursion. More complex
examples (than will be discussed here) should be studied and implemented in order to
ensure a complete appreciation for the power of recursion.

The procedure/function calling process previously described supports recursion without
any changes.

A recursive function must have a recursive definition that includes:

1. base case, or cases, that provide a simple result (that defines when the recursion
should stop).

2. rule, or set of rules, that reduce toward the base case.

This definition is referred to as a recursive relation.

11.1 Recursion Example, Factorial

The factorial function is mathematically defined as follows:

n! = ﬁk
k=1

Or more familiarly, you might see 5! as:
5! = 5X4X3X2X1

It must be noted that this function could easily be computed with a loop. However, the
reason this is done recursively is to provide a simple example of how recursion works.
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A typical recursive definition for factorial is:

1 ifn=0

torial =
factorial(n) n X factorial(n—1) ifn=1

This definition assumes that the value of n is positive.

11.1.1 Example Program, Recursive Factorial Function

The following code provides an example of the recursive factorial function.

# Example program to demonstrate recursion.

# Data Declarations

.data
prompt: .ascii "Factorial Example Program\n\n"
.asciiz "Enter N value: "
results: .asciiz "\nFactorial of N = "
n: .word O
answer: .word O
o
# Text/code section
.text
.globl main
main:
$ oo
# Read n value from user
1i $vo, 4 # print prompt string
la $a0, prompt
syscall
1i $v0o, 5 # read N (as integer)
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syscall
sw $v0, n

# call factorial function.

1w $a0, n
jal fact
sw $v0, answer

# Display result

1i $vo, 4
la $a0, results
syscall

1li $vo, 1
lw $a0, answer
syscall

# Done, terminate program.

1li $v0o, 10
syscall
.end main

B oo
# Factorial function

# Recursive definition:

# =1 if n

# = n * fact(n-1)

$ e

# Arguments

# $a0 - n

# Returns

# $v0 set to n!

if n>=1
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# print prompt string

# print integer

# call code for terminate
# system call
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.globl fact

.ent fact

fact:
subu $sp, $sp, 8
sw $ra, ($sp)
sw $s0, 4($sp)

1i $vo, 1 # check base case
beq $a0, 0, factDone

move $s0, $a0 # fact(n-1)

sub $a0, $a0, 1

jal fact

mul S$vO0, $s0, $vO # n * fact(n-1)
factDone:

1w S$ra, ($sp)
1w $s0, 4(S$Ssp)
addu $sp, S$sp, 8
jr Sra

.end fact

The output for the example would be displayed to the QtSpim console window. For
example;

Factorial Example Program

Enter N value: 10

Factorial of N = 3628800

Refer to the next section for an explanation of how this function woks.
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11.1.2 Recursive Factorial Function Call Tree

In order to help understand recursion, a recursion tree can show how the recursive calls
interact.

When the initial call occurs from main, the main will start into the fact() function
(shown as step 1). Since the argument, of 5 is not a base case, the fact() function must
call fact() again with the argument of n-1 or 4 in this example (step 2). And, again,
since 4 is not the base case, the fact() function must call fact() again with the argument
of n-1 or 3 in this example (step 3).

This process continues until the argument passed into the fact() function meets the base
case which is when the arguments is equal to 1 (shown as step 5). When this occurs,
only then is a return value provided to the previous call (step 6). This return argument is
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then used to calculate the previous multiplication which is 2 times 1 which will return a
value to the previous call (as shown in step 7).

This returns will continue (steps 8, 9, and 10) until the main has a final answer.

Since the code being executed is the same, each instance of the fact() function is
different from any other instance only in the arguments and temporary values. The
arguments and temporary values for each instance are different since they maintained on
the stack as required by the standard calling convention.

For example, consider a call to factorial with n = 2 (step 4 on the diagram). The return
address, $ra, and previous contents of $s0 are preserver by pushing them on the stack in
accordance with the standard calling convention. The base case is checked and since n
# 1 it continues to save the original value of 1 into $s0, decrement the original argument,
n, by 1 and calling the fact() function (with n = 1). The call the fact() function (step 5 in
the diagram) is like any other function call in that it must follow the standard calling
convention, which requires preserving $ra and $s0. This when the function returns an
answer, 1 in this specific case, that answer in $v0 is multiplied by the original n value in
$s0 and returned to the calling routine.

As such the foundation for recursion is the procedure call frame or activation record. In
general, it is simply stated that recursion is stack-based.

It should also be noted that the height of the recursion tree is directly associated with the
amount of stack memory used by the function.

11.2 Recursion Example, Fibonacci
The Fibonacci function is mathematically defined as follows:
F,=F, +F_,
for positive integers with seed values of Fy = 0 and F; = 1 by definition.
As such, starting from 0 the first 14 numbers in the Fibonacci series are:
0,1,1,2,3,5,8, 13, 21, 34, 55, 89, 144, 233

It must be noted that this function could easily be computed with a loop. However, the
reason this is done recursively is to provide a simple example of how recursion works.
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For example, a typical recursive definition for Fibonacci is:

0
fib(n) = {1

fib(n—
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ifn=0
ifn=1
1) + fib(n—2) if n>1

This definition assumes that the value of n is positive.

11.2.1

Example Program, Recursive Fibonacci Function

The following code provides an example of the recursive Fibonacci function.

# Recursive Fibonacci program to demonstrate recursion.

# Data Declarations

.data

prompt: .ascii
.asciiz

results: .asciiz

n: .word O

answer: .word O

# Text/code section

.text

.globl main

main:

$ oo

"Fibonacci Example Program\n\n"

"Enter N value: "

"\nFibonacci of N

# Read n value from user

1li $vo, 4

# print prompt

string
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la $a0, prompt
syscall

1i $vo, 5 # read N (as integer)
syscall

sw $v0, n

# call Fibonacci function.

1w $al0, n

jal fib
sw $v0, answer
$
# Display result
1i $vo, 4 # print prompt string
la $a0, results
syscall
1i $vo, 1 # print integer
lw $a0, answer
syscall
$ o
# Done, terminate program.
1i $v0o, 10 # call code for terminate
syscall # system call

.end main

B oo
# Fibonacci function

# Recursive definition:

# =0 ifn=0

# =1 ifn=1

# = fib(n-1) + £fib(n-2) if n > 2
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$ o
# Arguments
# $a0 - n
# Returns
# $v0 set to fib(n)
.globl fib
.ent fib
fib:
subu $sp, S$sp, 8
sw Sra, ($sp)
sw $s0, 4(S$sp)
move $vO0, $al # check for base cases
ble $a0, 1, fibDone
move $s0, $a0 # get fib(n-1)
sub $a0, $a0, 1
jal £ib
move $a0, S$sO
sub $a0, $a0, 2 # set n-2
move $s0, S$SvO # save fib(n-1)
jal f£ib # get fib(n-2)
add $vO0, $s0, $vO # fib(n-1)+£fib(n-2)
fibDone:
lw $ra, ($sp)
1w $s0, 4(S$sp)
addu $sp, S$sp, 8
jr Sra
.end fib

The output for the example would be displayed to the QtSpim console window.
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For example;

Fibonacci Example Program

Enter N value: 13

Fibonacci of N = 233

Refer to the next section for an explanation of how this function works.

11.2.2 Recursive Fibonacci Function Call Tree

The Fibonacci recursion tree appears more complex than the previous factorial tree since
the Fibonacci functions uses two recursive calls. However, the general process and use
of the stack for arguments and temporary values is the same.

As noted in the factorial example, the basis of recursion is the stack. In this example,
since two recursive calls are made, the first call will make another call, which may make
yet another call. In this manner, the call sequence will follow the order shown in the
following diagram.
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The following is an example of the call tree for a Fibonacci call with n = 4.

main:
fib(4)
step 16
step 1 :

fib: ‘\
fib(3) + L

fib: | step9  step 12 | fiby:
ops ¢ B s
fib(l) / § : \ fib(o) JuTTm———— §
step 3 step 8 step 11 step 13
step 5 fib: fib: P b fib: §
frreaneaseaneans fib(1) + ) retumn 1 1 - - eturn 0
- fbO) i )
step 4 erveeaeeeens . step 7
| step 6 | : step 7
P fib: fib: -
return 1 return O

The calls are shown with a solid line and the returns are shown with a dashed line.
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Below is a simple example program. This program can be used to test the simulator
installation and as an example of the required program formatting.

# Example program to find the minimum and maximum from
# a list of numbers.

oo
# data segment
.data
array: .word 13, 34, 16, 61, 28
.word 24, 58, 11, 26, 41
.word 19, 17, 38, 12, 13
len: .word 15
hdr: .ascii "\nExample program to find max and"
.asciiz " min\n\n"
newLine: .asciiz "\n"
alMsg: .asciiz "min = "
a2Msg: .asciiz "max = "
o

# text/code segment
# OtSpim requires the main procedure to be named "main".

.text
.globl main
.ent main
main:

# This program will use pointers.

# t0 - array address
# tl - count of elements
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# print header

H= = =

# s2 - min
# s3 - max
# t4 - each word from array
$ oo
# Display header
# Uses print string system call
la $a0, hdr
1i $vo, 4
syscall
$ o
# Find max and min of the array.
#
#
#
# as needed.
la $t0, array
lw $tl, len
lw  $s2, ($t0)
1w $s3, ($t0)
loop:
lw  $t4, ($tO0)
bge $t4, $s2, NotMin
move $s2, S$t4
NotMin:
ble $t4, $s3, NotMax
move $s3, S$t4
NotMax:
sub S$t1, S$t1, 1
addu $t0, S$tOo, 4
bnez $tl, loop
$ oo

# Display results min and max.

Set min and max to first item in list and then
loop through the array and check min and max against
each item in the list, updating the min and max values

set $t0 addr of array
set $tl to length

set min, $t2 to array[O0]
set max, $t3 to array[O0]

get array[n]
is new min?
set new min
is new max?
set new max

decrement counter
increment addr by word

# First display string, then value, then a print a
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# new line (for formatting).

la s$ao,
1i $vo,
syscall

move $a0,

1li $vo,
syscall
la s$ao,
1li sSvo,
syscall
la $ao0,
1li $vo,
syscall

move $a0,

alMsg
4

$s2
1

newLine
4

a2Msg

$s3

newLine
4

# Done, terminate program.

1li $vo,
syscall
la $ao,
1i $vo,
syscall
$ ——
1li $vo,
syscall
.end main

10

Appendix A — Example Program

Do for each max and min.

# print

# print

# print

# print

# print

# print

umin = n

min

a newline

n max = n

max

a newline

# all done!
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13.0 Appendix B — QtSpim Tutorial

This QtSpim Tutorial is designed to prepare you to use the QtSpim simulator and
complete your MIPS assignments more easily.

13.1 Downloading and Installing QtSpim

The first step is to download and install QtSpim for your specific machine. QtSpim is
available for Windows, Linux, and MAC OS's.

13.1.1 QtSpim Download URLs
The following are the current URLs for QtSpim.
The QtSpim home page is located at:

http://spimsimulator.sourceforge.net/

The specific download site is located at:
http://sourceforge.net/projects/spimsimulator/files/

At the download site there are multiple versions for different target machines. These
include Windows (all versions), Linux (32-bit), Linux (64-bit), and Mac OS (all
versions). Download the latest version for your machine.

These URLS are subject to change. If they do not work, a Google search will find the
correct URLs.

13.1.2 Installing QtSpim

Once the package is downloaded, follow the standard installation process for the
specific OS being used. This typically will involve double-clicking the downloaded
installation package and following the instructions. You will need administrator
privileges to perform the installation. Additionally, some installations will require
Internet access during the installation.
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13.2 Working Directory

Create a working directory for the QtSpim assembly source files. This directory can be
named anything, but must be legal on the chosen operating system.

13.3 Sample Program

Copy or type the provided example program (from Appendix A) to a file in your
working directory. This file will be used in the remainder of the tutorial. It
demonstrates assembler directives, procedure calls, console I/O, program termination,
and good programming practice. Notice in particular the assembler directives '.data’ and
".text' as well as the declarations of program constants. Understanding the basic flow of
the example program will help you to complete your SPIM assignment quickly and
painlessly. Once you have created the file and reviewed the code, it is time to move
onto the next section.

13.4 QtSpim - Loading and Executing Programs

After the QtSpim application installation has been complete and the sample program has
been created, you can execute the program to view the results. The use of QtSpim is
described in the following sections.

13.4.1 Starting QtSpim

For Windows, this is typically, performed with the standard “Start Menu -> Programs
-> QtSpim ” operation. For MAC OS, enter LaunchPad and click on QtSPim. For
Linux, find the QtSpim icon (location is OS distribution dependent) and click on
QtSpim.
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13.4.2 Main Screen

The initial QtSpim screen will appear as shown below. There will be some minor
difference based on the specific Operating System being used.

E & Hd 4 o # » o3 = @

FP Regs Int Regs [16] Data Text

Int Regs [16] B ® Text B ®
BPC =0 ~ User Text Segment [00400000]..[00440000] ~
EPC =0 [00400000] 8£a240000 1w $4, 0(529) ; 183: 1w 5a0 0(5sp) # argc
Cause =0 [00400004] 27a50004 addiu $5, $29, 4 ; 184: addiu Sal Ssp 4 # argv
BadVAddr = 0 (004000081 24a60004 addiu $6, 55, 4 ; 185: addiu $aZ $al 4 # envp
Status = 3000££10 [0040000c] 00041080 s11 $2, $4, 2 ; 186: sl11 $v0 $a0 2

[00400010] 00c23021 addu $6, $6, $2 ; 187: addu $aZ2 $a2 $vl
HI =0 [00400014] 0c000000 jal Ox00000000 [main] ; 188: jal main
Lo 0 [00400018] 00000000 mep ; 1809:

[0040001c] 24020002 ori $2, $0, 10 ; 181:
RO [z0] = O [00400020] 0000000c syscall ; 182:
Rl [at] =0
Rz [vO] = O Kernel Text Segment [80000000]..[80010000]
R3 [vi] = 0 [800001801 0001d821 adda $27, $0, §1 ; 90: move $k1 $at # Save Sat
R4 [a0] = 1 [B0000184] 3c019000 1lui $1, -28672 ;7 82: sw $v0 sl Not re-entrant and we can't
R5 [al] trust Ssp
R6 [a2] [B0000188] ac220200 sw $2, 512(%51)
R7 [a3] =0 [8000018c] 3c019000 1ui §1, -28672 ; 93: sw Sal sZ # But we need to use these
R8 [t0] = O registers
R9 [tl] = O [80000180] ac240204 sw $4, 516($51)
R1O [t2] = O [B0000194] 401a6800 mfcO $26, $13 ;
R11 [£3] = O (800001981 001a2082 srl $4, $26, 2 ;
R12 [t4] = O [800001%c] 2084001f andi $4, $4, 31 ;
R13 [t5] = O [800001a0] 24020004 ori $2, $0, 4 ;
R14 [t6] = O [800001a4] 3c049000 1ui $4, -28672 [_ ml_] ;
R15 [t7] = 0 [B00001a8] 0000000c sysecall ;
R16 [s0] = O [800001ac] 24020001 ori $2, $0, 1 ;
R17 [s1] = O [800001b0] 001a2082 srl $4, $26, 2 ;
R18 [s2] = O [800001b4] 20284001f andi $4, $4, 31 ;
R19 [s3] = 0 [B00001b8] 000C000c sysecall ;
R20 [s4] = 0 [800001bc] 24020004 ori $2, $0, 4 ;
R21 [s5] = 0 [800001cO] 2344003c andi 54, 526, 60 ;
R22 [s6] = O [B00001c4] 3c019000 1ui $1, -28B672 ;
R23 [s7] = 0 [800001cB] 00240821 addu $1, $1, S$4
R24 [t8] = O [800001cc] B8c240180 1w $4, 384(51)
R25 [t9] = O [800001d40] 00000000 mop ; 113: nop
R26 [kD] = O [800001d4] 0000000c syscall ; 114: syscall
R27 [k1] = O . [B000D01d4B] 34010018 eri $1, $0, 24 ; 116: bne $k0 0x18 ok_pc # Bad PC exception =

Copyright 1990-2012, James R. Larus.
All Rights Reserved. -
SPIM is distributed under a BSD license. | ‘
See the file README for a full copyright notice. =

13.4.3 Load Program

To load the example program (and all programs), you can select the standard

“File — Reinitialize and Load File” option from the menu bar. However, it is typically
easier to select the Reinitialize and Load File Icon from the main screen (second file
icon on right side).
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Note, the Load File option can be used on the initial load, but subsequent file loads will
need to use the Reinitialize and Load File to ensure the appropriate reinitialization
occurs.

Reinitialize and Load File Icon

E & dHd g a @ [ = @
FP Regs Int Regs [16] Data Text
Int Regs [16] B @ Text B®E
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] B£a40000 1w $4, O($29) ; 183: 1 0 0(ssp) # argc
cause =0 [00400004] 27a50004 addiu $5, $29, 4 ; 184: a 5al $sp 4 # argv
BadVAddr - 0 [00400008] 24a60004 addiu $6, 55, 4 ; 185: 5a2 Sal 4 # envp
Status = 2000F10 [0040000c] 00041080 s11 $2, $4, 2 ; 186: 0 $a0 2

Once selected, a standard open file dialog box will be displayed. Find and select
'asst0.asm' file (or whatever you named it) created in section 3.0.

#| | = sied [tmp)

Places MName ¥ Size Modified
Q, search L mipso.asm 0 bytes 15:16
&5 Recently Used | mipsl.asm 0 bytes 15:16

= ed

@ Desktop

E3 File System
. Floppy Drive
i© Documents
i Music

@ Pictures

3 videos

i Downloads
& float

| Add | Assembly | v |

\ Cancel | [ Open J

Navigate as appropriate to find the example file previously created. When found, select
the file (it will be highlighted) and click Open button (lower right hand corner).
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The assembly process occurs as the file is being loaded. As such, any assembly syntax
errors (i.e., misspelled instructions, undefined variables, etc.) are caught at this point.
An appropriate error message is provided with a reference to the line number that
caused the error.

When the file load is completed with no errors, the program is ready to run, but has not
yet been executed. The screen will appear something like the following image.

E & B 8 a #
FP Regs Int Regs [16] Data
Int Regs [16] @ ® Text
BC -0
EPC =0 [00400000]
cause =0 [00400004]
BadVAddr = 0 (004000081
Status = 3000££10 [0040000c]
[00400010]
HI =0 [00400014]
Lo =0 1004000181
[0040001c]
RO [r0] = O [00400020]
R1 [at] = 0 [00400024]
Rz [v0] = 0 (004000281
R3 [vl] = 0O [0040002c]
R4 [a0] = 1 [00400030]
R5 [al] [00400034]
R6 [a2] = 7 (004000381
R7 [a3] =0 [0040003c]
R8 [t0] = 0 [00400040]
R9 [El] =0 [00400044]
R10 [t2] = O [00400048]
R11 [t3] = O [0040004c]
R12 [t4] = 0 [00400050]
R13 [£5] = 0 [00400054]
Rl4 [t6] = O [00400058]
R15 [t7] = O [0040005¢c]
R16 [s0] = O [00400060]
R17 [sl] = 0 [00400064]
R18 [s2] = 0 1004000681
R19 [s3] = 0 [0040006c]
R20 [s4] = 0 1004000701
R21 [s5] = 0 [00400074]
R22 [s6] = O 1004000781
R23 [s7] = 0 [0040007c]
R24 [t8] = 0O (004000801
R25 [£3] = 0 [00400084]
R26 [k0] = O [00400088]
R27 [k1] = O <1 | 1004g008e]

Copyright 1990-2012, James R.

All Rights

SPIM is distributed under a BS
See the file README for a fu

Reserved.

Addresses

Text

8£ad0000
27a50004
24360004
0oo41080
00c23021
0c100009
00000000
3402000a
0000000c
3c011001
34240040
34020004
0000000c
3c081001
3c011001
8c2%003c
8d120000
8d130000
8d0c0000
0192082a
10200002
000c2021
026c082a
10200002

25080004
1520£££7
3c011001
34240069
34020004
0000000c
00122021
34020001
0000000c

OpCodes

= L7
®
User Text Segment [00400000]..[00440000]
1w $4, 0(529) ; 183: 1w 5a0 0(5sp) # argc
addiu $5, 329, 4 ; 184: addiu Sal Ssp 4 # argv
addiu $6, 55, 4 ; 185: addiu $aZ $al 4 # envp
sll $2, $4, 2 ; 186: sl11 §v0 $al 2
addu $6, 56, S$2 ; 187: addu SaZ 5a2 sv0
jal 0x00400024 [main] ; 188: jal main
nep ; 188: nop
eri $2, $o0, 10 ; 191: 11 sv0 10
syscall ;7 1892: syscall # syscall 10 f{exit)
lui $1, 4097 [hdr] ; 45: la $a0, hdr
ori $4, $1, 64 [hdr]
ori $2, $0, 4 ; d6: 11 4
syscall ; 47: sy # prin
lui $8, 4097 [array] : la St0, array #
1lui $1, 4097 57: 1w
1w $9, 60(51)
1w 518, 0(58) ; 59: 1w
1w $19, 0(3%8) ; B0: 1w
1w $12, 0(38) ; B2: 1w
slt $1, $12, S$l1s ; B4: bge §
beq $1, $0, & [NotMin-0x00400050]
addu $18, 50, $12 ; E65: move 552, 5td # set new min
slt $1, $19, $12 ; E7: ble 5td, 553, NotMax # is new max
beq $1, 50, 8 [NotMax-0x0040005¢]
addu $15, 50, $12 ;7 E8: move $s3, 5t4d # set new max
addi %9, $9, -1 ; 71: sub 5t1, St1, 1 # decrement counter
addiu $8, 38, 4 ; 72: addu 5t0, 5t0, 4 # increment addr by word
bne $2, 50, -36 [loop—0x0040006c]

lui $1, 4037 [al_msg] ; 80: la $al, al_msg

ori $4, $1, 105 [al msg]

ori $2, $0, 4 ; B1: 1i sv0, 4

syscall ; 82: syscall # print "min = "
addu $4, 50, 518 ; 84: move 5al, $s2

ori $2, S0, 1 ; 85: 1i 5v0, 1

syscall ; 86: syscall # pri

lui $1, 4097, 88: la $a0, new_1

ew_1n] ;

Bare-Instructions Psuedo-Instructions

The code is placed in Text Window. The first column of hex values (in the []'s) is the
address of that line of code. The next hex value is the OpCode or hex value of the 1's
and 0's that the CPU understands to be that instruction.
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MIPS includes pseudo-instructions. That is an instruction that the CPU does not

execute, but the programmer is allowed to use. The assembler, QtSpim here, accepts the
instruction and inserts the real or bare instruction as appropriate.

13.44

The data segment contains the data declared by your program (if any). To view the data
segment, click on the Data Icon. The data window will appear similar to the following:

Data Window

F & H 8

FP Regs
Int Regs [1

PC

EPC
Cause
BadVAddr
Status

RO [rO]
Rl [at]
R2 [v0]
R3 [v1]
R4 [a0]
RS [al]
RE6 [a2]
R7 [a3]
R8 [tO]
R9 [t1]
R10 [t2]
R11 [t3]
R12 [t4]
R13 [t5]
Rl4 [t6]
RIS [t7]
R16 [s0]
R17 [s1]
R18 [s2]
R1S [s3]
R20 [s4]
R21 [s5]
R22 [s6]
R23 [s7]
R24 [t8]
R25 [t9]
R26 [kO]
R27 [k1]

Copyright 1990-2012, James

6]

Int Regs [16]

a @ 4

Data

® Data

400070
400070
24

0
3000f£10

0
1001003c

a
0
0
d
0
0
a
a
0
7
3d
0
0
[}
0
0
[}
0
0

All Rights Reserved.
SPIM is distributed under,

See the file README F

Running

Addresses

As before, the addresses are shown on the left side (with the []'s). The values at that

[10000000]
[10010000]
[100100101
[10010020]
1100100301
1100100401
[10010050]
1100100601
[100100701
[10010080]

Text

.. [1000£f£F]
oooooo0d
0000001c
00000012
00000026
£178450a
206£7420
62696420
2078616d

.. [1003££££]

User Stack [Tffffads].

Data (Hex Representation)

0oooooo1
ooo00000

6770672
54424552

full copyright notice.

oooooooo
Qoooopzz
goooools
00000029
0000000
656cT06d
64626066
0a000a0a
00002034
gooooooo

. [80000000]

45£4445
34444950
4548434e

2£3d454c
63696c70
65642e6d

-, |User data segment [10000000]..[10040000]

[ 120
78616420
be696d00

Tfffffel
Tfffffde
Tffffedb
TEfffdbd
TEEE£4TL
Tffffeds
TEEEfcOE
TEfffb2d

544b5345
39333038
45445f44
2£727375
6697461
6746073
4fdkdedg
6d662d67
47445800
504£544b

TEffffcd
Tfffffla
TEfffedl
TEfffdb2
TEEE£dSE
TEfffehbd
TEfffbb3
TEfffbla
6d6f6B2f
6cbe7d2f
Zf6cE1B9
414c5f4f
465£504fF
4£494700

4£774a56
5255435f
696e553d

E . L o . e e
.Example program
t o find ma x and
min . min =
ma x = e e e e e e e e
........ N . .. .. ..
........ q . _
S
................
............. /' hom
e/ed/Dropbox/unl
v/mips/tutorial}/
asst0.asm.GIO_TLA
UNCHED_DESEKTOP_F
ILE_PID=80239.GIO
_LAUNCHED _DESEKTO
P_FILE=/usr/shartcr
e/applications/g
tspim.desktop.GP
G_AGENT_TINFO=/tm
p/keyring-fmVvVJwo
/f/gpg:0:1.XDG_CUR
RENT_DESK OF =0Uni

= &

Data (ASCII Representation)

address are shown in hex (middle) and in ASCII (right side). Depending on the specific

type of data declarations, it may be easier to view the hex representation (i.e., like the
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array of numbers from the example code) or the ASCII representation (i.e., the declared
strings).

Note, right clicking in the Data Window will display a menu allowing the user to change
the default hex representation to decimal representation (if desired).

13.4.5 Program Execution

To execute the entire program (uninterrupted), you can select the standard “Simulator
— Run/Continue” option from the menu bar. However, it is typically easier to select
the Run/Continue Icon from the main screen or to type the F5 key.

Run/Continue

5 & H g o HE 3 i} @ = (7]

FP Regs Int Regs [16] Data Text
Int Regs [16] = Text X
BC User Text Segment [00400000]..[00440000]
EPC [00400000] 8£a40000 1w $4, 0($29) ;s 183: 1w 5al0 0($sp) # argc

[00400004] 27250004 addiu $5, $29, 4 ;18 $al $sp rgv
BadVAddr [00400008] 24260004 addiu $6, $5, 4 ; 18 $a2 5al 4 # env
Status

3000££10 [0040000c] 00041080 sl11 $2, $4, 2 ; 186:

Once typed, the program will be execution.

If a program performs input and/or output, it will be directed to the Console window.
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For example, the sample program (from Appendix B) will display the following in the
Console window when executed.

Example program to find max and min

min=7
max =61

For the sample program and the initial data set, these are the correct results.

13.4.6 Log File

QtSpim can create a log file documenting of the program results. To create a log file,
you can select the standard “File — Save Log File” option from the menu bar.
However, it is typically easier to select the Save Log File Icon from the main screen.

Save Log File

= & d a8 @ # b 0 @

11

Status 3000££10

FP Regs Int Regs [16] Data Text
Int Regs [16] @ ® Text @ ®
BC -0 - User Text Segment [00400000]..[00440000]
EPC =0 (004000001 3£a40000 1w $4, 0($239) ; 183: lw 5a0 0($sp) # arge
Cause -0 [00400004] 27250004 addiu $5, $29, 4 184: addiu §al §sp 4 # argv
BadVAddr = 0 [00400008] 24260004 addiu $6, $5, 4 $aZ sal 4 # envp
= 0 $al 2

[0040000c] 00041080 s11 $2, $4, 2
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When selected, the Save Windows to Log File dialog box will be displayed as shown
below on the left.

@ Save Windows To Log File @ Save Windows To Log File

Select windows to write to log File Select windows to write to log File
| Registers | Registers
| Text Segments [ Text Segments
| Data Segments " | Data Segments
| Console [ console
Save to file - Save to file -
Cancel oK _Cancel | L 0K |

In general, the Text Segments and Console options should be selected as shown on the
left. Based on the current version, selecting all will cause the simulator to crash.

Additionally, there is no default file name or location (for the log file). As such, a file
name must be entered before it can be saved. This can done by manually entering the
name in the Save to file box or by selecting the ... box (on the lower right side).
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When the ... option is selected, a Save to Log File dialog box is displayed allowing
selection of a location and the entry of a file name.

€ Save To Log File

Look in: | (=8 /home/ed = € >y A~ @B B 3

B computer | |l Desktop
| ed |l Documents
|l Downloads
|l Dropbox
|l Music
|l Pictures
| Public
|l Templates
|l Ubuntu One

|l Videos

File name: [| Dpen

Files of type: | Text files (*.txt) Cancel |

When completed correctly, the Save Windows To Log File box will appear similar the

below image.
@ Save Windows To Log File s

Select windows to write to log File
["] Registers

B Text Segments

["] Data Segments

& console

save to file | fhome/fed/Desktop/logFile.txt

| cancel | oK |

When the options are selected and the file name entered, the OK box can be selected
which will save the log file. This log file will need to be submitted as part the
assignment submission.

Page 126



Appendix B — QtSpim Tutorial

13.4.7 Making Updates

In the highly unlikely event that the program does not work the first time or the program
requirements are changed, the source file will need to be updated in a text editor. After
the program source file is updated, it must be explicitly reloaded into QtSpim. The
Reinitialize and Load File option must be used as described in section 4.3. Every
change made to the source file must be re-loaded into QtSpim.

Once re-loaded, the program can be re-executed as noted in section 4.5. Refer to section
5.0 for information regarding debugging and controlled program execution.

13.5 Debugging

Often, looking at program source code will not help to find errors. The first step in
debugging is to ensure that the file assembles correctly (or “reads” in the specific case of
QtSpim). However, even if the file assembles, it still may not work correctly. In this
case, the program must be debugged. In a broad sense, debugging is comparing the
expected program results to actual program results. This requires a solid understanding
of what the program is supposed to do and the specific order in which it does it — that
is understanding the algorithm being used to solve the program. The algorithm should
be noted in the program comments and can be used as a checklist for the debugging
process.
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One potentially useful way to check the program status is to view the register contents.
The current register contents are show in registers window (left side) as shown in the
image below.

Register Window

FP Regs Int Reasds] Data Text
Int Regs [16] B & Text [=)E]
PC =0 User Text Segment [00400000]..[00440000]
EPC =0 [00400000] B£a40000 1w $4, 0($29) ; 183: 1 0 0(ssp) #
Cause =0 [00400004] 27a50004 addiu $5, $29, 4 ;1
BadVAddr = 0 (004000081 24a60004 addiu $6, $5, 4

Status 3000££10 [0040000c] 00041080 s11 $2, $4, 2

[00400010] 00223021 addu $6, $6, $2

HI =0 [00400014] 0c000000 Jal 0%00000000 [main]
Lo -0 [00400018] 00000000 nop
[0040001c] 2402000a ori $2, $0, 10
RO [r0] = O (004000201 00000C0c syscall 11 10 (exit)
Rl [at] = O
Rz [v0] = O Kernel Text Segment [80000000]..[80010000]
R3 ([vl] = O [20000180] 0001d821 addu $27, $0, $1 ; 90: move Skl Sat # Save Sat

The overall debugging process can be simplified by using the QtSpim controlled
execution functions. These functions include single stepping through the program and
using one or more breakpoints. A breakpoint a programmer selected location in the
program where execution will be paused. When the program is paused the current
program status can be checked by viewing the register contents and/or the data segment.
Typically, a breakpoint will be set, the program executed (to that point), and from there
single stepping through the program watching execution and checking the results (via
register contents and/or data segment).

When stepping through the program, the next instruction to be executed is highlighted.
As such, that instruction has not yet been executed. This highlighting is how to track
the progress of the program execution.

To set a breakpoint, select an appropriate location. This should be chosen with a
specific expectation in mind. For example, if a program does not produce the correct
average for a list of numbers, a typical debugging strategy would be to see of the sum is
correct (as it is required for the average calculation). As such, a breakpoint could be set
after the loop and before the average calculation.
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As an example, to set a breakpoint after the loop in the sample program (from Appendix
B), the first instruction after the loop can be found in the Text Window. This will
require looking at the pseudo-instructions (on the right side of the Text Window).

The first instruction after the loop in the example program is highlighted in orange (for
reference) in the image below.

Note, the orange highlighting was added in this document for reference and will not be
displayed in QtSpim during normal execution.

F & H g9 a Poon @ = ©
FP Regs Int Regs [16] Data Text

Int Regs [16] B ® Text = =
CUUHUSUUUT EERUUUU  mMMEd ww, ey . musru vas var v T SHVE ~

PC 40002¢c ~ | [0040000c] 00041080 =11 $2, $4, 2 ; : s11 §v0 Sa0 2

EPC o [00400010] 00c22021 addu $6, $6, $2 ; : addu $a2 Sa2 svO

Cause o [004000141 0c100002 3Jjal 0x00400024 [main] ;

BadVAddr = 0 [00400018] 00000000 nop ;

Status 3000££10 [0040001c] 3402000a ori $2, $0, 10 ;
1004000201 0000CC0c syscall ;

HI =0 [00400024] 2c011001 1lui $1, 4057 [hdr] ;

Lo =0 (004000281 34240040 ori $4, $1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, 4 B

RO [r0] = O [00400020] 0000000c syscall ;

Rl [at] 10010000 1004000341 2c0D81001 1lui $8, 4097 [array] ;

R2 [vO] = 4 [00400038] 2c011001 1lui $1, 4097 ;

R3  [vl] = O [0040002c] 8c29003c 1w $9, 60(S1)

R4 [a0] 10010040 1004000401 24120000 1w $18, 0(38) ; 59:

RS [al] = 7 c [00400044] 284130000 1w $1%, 0O(S8) ; B0:

Ré [a2] = 7 [00400048] 2d40c0000 1w $12, 0(S8) ; 62:

R7 [a3] = O [0040004c] 0192082a slt $1, 312, $18 ; 64:

R8 [tO0] = O [00400050] 10200002 beq $1, $0, 8 [HotMin—0x004000

R9 [tl] = O [00400054] 000c%021 addu $18, S0, $12 ; 65: move §s2,

R10 [t2] = O 1004000581 026c082a slt $1, $13, $1z ; 67: ble $td,

R11 [t3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax—0x0040005c]

R12 [t4] = O 1004000601 aadu $19, 30, $12 ; 68: move §.

R13 [t5] = O 1004000641 addi $9, $3, -1 ; 71: sub St 1 1

R14 [t6] = O [00400068] addiu $8, 38, 4 ; 72: addu St ] ¢ incremer i ¢ word

R15 [t7] = O [0040006c] 15 bne $9, 30, —-36 [loop-0x0040006c]

R16 [s0] = O (0020007 0)EELIE lui $1, 4097 [al_msg] ; 80: la $a0, al_msg

R17 [s1] = O [00400074] 234240069 ori $4, $1, 105 [al msg]

R18 [s2] = O 1004000781 34020004 ori $2, 30, 4 ; 0,

R19 [s3] = O [0040007c] 0000CCOc syscall ; 11 "min = "

R20 [s4] = O (004000801 00122021 addu $4, $0, 518 ; sa0

R21 [s5] = O [00400084] 34020001 ori $2, 30, 1 ; 1i $v0,

R22 [s6] = O [00400088] 0000000c sysecall ; syscall # print min

R23 [s7] = O [0040008c] 23c011001  1lui $1, 4097 [new_1n] ; la $a0, new_In # print s newline

R24 [t8] = O 1004000801 34240067 ori $4, $1, 103 [new_1ln]

R25 [t5] = O [004000%4] 24020004 ori $2, 30, 4 ; 89: 4

R26 [kO] = O [00400098] 0000000c syscall ;o0

R27 [k1] = O - | [004000%9c] 32c011001 lui $1, 4097 [a2_msg] ; 92: la $a0, a2 _msg 5

Copyright 1990-2012, James R. Larus.

All Rights Reserved. -
SPIM is distributed under a BSD license. | |
See the file README for a full copyright notice. =
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When an appropriate instruction

is determined, move the cursor to the instruction

address and right-click. The right-click will display the breakpoint menu as shown in

the image below.

B & H 4 a boom @

FP Regs Int Regs [16] Data Text
Int Regs [16] B ® Text

TUUTUUTTU T ETTTvOTE
PC = 40002 ~ | [0040000c] DOO41080
EPC =0 [00400010] 00c23021
Cause =0 [00400014] 0c100009
BadVAddr = 0 [00400018] 00000000
Status - 3000££10 [0040001c] 3402000a

[00400020] 0000000c
HI =0 [00400024] 3c011001
Lo =0 [00400028] 34240040

[0040002c] 34020004
RO [x0] = O [00400030] 0000000c
Rl [at] = 10010000 [00400034] 3c081001
R2 [v0] = 4 [00400038] 3c011001
R3 [vl] = 0 [0040003c] B8c29003c
R4 [a0] = 10010040 [00400040] 8d120000
RS [al] = Tffffadc [00400044] 8d130000
R6 [a2] = Tffffasd [00400048] 8d0c0000
R7 [a3] = 0 [0040004c] 0192082a
R8 [tO] = O [00400050] 10200002
RY [t1l] = 0 [00400054] 000c9021
R10 [t2] = O [00400058] 026c082a
R11 [t3] = 0 [0040005¢] 10200002
R12 [t4] = O [00400060] 000c9821
R13 [t5] = O [00400064] 2129ffff
R14 [t6] = O [00400068] 25080004
R15 [t7] = O [0040006c] 1520£f£7
R16 [s0] = O [004000701 3c011001
R17 [sl] = O [of
R18 [s2] = O [0
R19 [s3] = 0 rof hSeLectAll
R20 [s4] = 0 ot
R21 [s5] = O rof  Set Breakpoint
R22 [s6] = 0 [00 clear Breakpoint
R23 [s7] = 0 [0UTUUUBCT SCUTTUUT
R24 [t8] = 0 [00400090] 34240067
R25 [t9] = O [00400094] 34020004
R26 [k0] = O [00400098] 0000000c
R27 [k1] = O || [0040009c] 3c011001
Copyright 1990-2012, James R. Larus.

All Rights Reserved.
SPIM is distributed under a BSD license.
See the file README for a full copyright notice.

[E5]

auuru we, way 7 IUT. GuUlu vOEe wal ¥ v CHVE 5
sl1l $2, $4, 2 ; 186: s11 Sv0 5a0 2
addu $6, $6, $2 ; 187: addu S22 $a2 Svl ~
jal 0x00400024 [main] ; 188: jal main
nep ; 189: nop
ori $2, $0, 10 ; 181: 1i Sv0 10
syscall ; 182: syscall # syscall 10 (exit)
lui $1, 4097 [hdr] ; 45: la $a0, hdr
ori 54, $1, 64 [hdr]
ori $2, $o0, 4 E 1i svo, 4
syscall i syscall # prin
lui $8, 4097 [array] ; la $t0, array
lui $1, 4037 ; 1w 5t1, len #
1w §9, 60(S51)
1w $18, 0($8) ; 59: 1w §s52, (5t0) 1
1w 513, 0(%58) ; 60: 1w 553, (5t0)
1w $12, 0(%58) ; 6Z2: 1w 5t4, (5t0)
slt $1, $12, sls ; €4: bge 5t4, 552, |
beqg $1, S0, 8 [NotMin-0x00400050]
addu $18, $0, $12 ; 65: move $§s2, Std #
slt 51, $19, $1z2 ; 67: ble $t4, 553, 1
beq $1, $0, 8 [NotMax-0x0040005c]
addu $19, $0, $12 ; 68: move 5.
addi 33, $3, -1 ; 71: sub St
addiu %8, $8, 4 ; 72: addu &
bne $§2, $0, -36 [loop-0x0040006c]
lui $1, 4097 [al_msg] ; 80: la Sal, al_msg

., $1, 105 [al_msg]

., S0, 4 ; 81:
Ctri+A ; 82:

4, %0, Sls ; 84

., S0, 1 ;85

1 ; 86
1uil y1, 4097 [new 1n] ; 88
ori $4, $1, 103 [new_ln]
ori $2, $0, 4 ; 89: 1i s5v0, 4
syscall ; 90: syscall
lui $1, 4097 [a2 msg] ;7 92: la $al0, aZ msg 5

To set a breakpoint, select the Set Breakpoint option. If a breakpoint has already been
set, it can be cleared by selecting the Clear Breakpoint option.
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Once the breakpoint has been set, it will be highlighted with a small red icon such as an
N as shown in the following image. Note, different operating systems may use a
different icon.

E & H &8 @ # » 1 @ I @

FP Regs Int Regs [16] Data Text
Int Regs [16] B ® Text & @
(UUSUUUUOT SHAUUUTE  aduid wey wey 4 ; T AuuIu vaz var § T EnvE -
BC = 40002c ~| | [0040000c] 00041080 s11 $2, $4, 2 ; s11 $v0 $al 2
EPC =0 [00400010] 00c23021 addu $6, $6, $2 ; addu $a2 Sa2 sv0 .
Cause =0 [00400014] 0c100002 jal 0x00400024 [main] ; : jal main
BadVAddr = 0 [00400018] 00000000 nop ;
Status = 3000££10 [0040001c] 3402000a ori $2, $0, 10 ;
[00400020] 0000000c syseall ;
HI =0 [00400024] 3c011001 1ui $1, 4097 [hdr] ;
Lo =0 [00400028] 34240040 ori $4, $1, 64 [hdr]
[0040002c] 34020004 ori $2, $0, 4 i
RO [r0] =0 [00400030] 0000000c syscall ;
Rl [at] = 10010000 [00400024] 32081001 1ui §8, 4097 [array] :
R2 [v0] = 4 [00400038] 2c011001 1lui $§1, 4097 ;
R3 [vl] =0 [0040003c] 8c2%003c 1w $9, 60(S1)
R4 [a0] = 10010040 [00400040] 84120000 1w $18, 0($8) ;5 t -
R5 [al] = Tifffadc [00400044] 84120000 1w $12, 0($8) ; t
R6 [a2] = Tffffasd [00400048] 840c0000 1w $12, ©($8) ; get
R7 [a3] =0 [0040004c] 0192082a slt $§1, $1z2, $18 ; €4: bge 5td, $s2, NotMin # is new min?
R8 [t0] = O (004000501 10200002 beq $1, $0, 8 [NotMin-0x00400050]
R9 [tl] = O [00400054] 00029021 addu $18, $0, $12 ; 65: move §s52, $td # set new min
R10 [t2] = 0 [00400038] 026c082a =1t $1, $19, $12 ; 7: ble 5td, 553, NotMax # is new max?
R11 [t3] =0 [0040005c] 10200002 beq $1, $0, 8 [NotMax-0x0040005c]
R12 [t4] = 0 [00400060] 000c9821 addu $19, 50, 512 ; 68: move 553, 5td # set new max
R13 [t5] = 0 [00400064] 212%ffff addi $9, $9, -1 ; 71: sub 5t1, St1, 1 # decrement counter
R4 [t6] = O [00400068] 25080004 addiu $8, $8, 4 ; 72: addu $t0, $t0, 4 # increment addr by word
R15 [t7] = O [0040006c] 1520£££7 bne $9, $0, -36 [loop-0x0040006c]
R1l6 [s0] = O N [00400070] 3c011001 1lui $1, 4097 [al msg] ; 80: la $a0, al msg
R17 [s1] = O (004000741 34240069 ori $4, $1, 105 [al_msg]
Rl8 [s2] = 0 [00400078] 34020004 ori $2, $0, 4 ; 81: 4
R19 [s3] = 0 [0040007c] 0000000c syscall ; 82: # print "min = "
R20 [s4] = 0 [00400080] 00122021 addu $4, $0, $18 ; 84: , §s2
R21 [s5] = 0 | [o0400084] 34020001 eori $2, %0, 1 ; 85: 1
R22 [s6] = 0 [00400088] 0000000c syscall ; 86: # print min
R23 [s7] = 0 [0040008c] 22011001 1lui §1, 4097 [new_1n] ; B&: new_1ln # print a newline
R24 [t8] = 0 [00400090] 24240067 ori $4, $1, 103 [new_ln]
R25 [£9] = 0 [00400094] 24020004 eori S$2, $0, 4 ; 88: 1i sv0, 4
R26 [k0] = 0O [00400098] 0000000c syscall ; 90: syscall
R27 [k1] = O = [004000%c] 3c011001 lui §1, 4097 [a2_msg] ; 82: la $al0, aZ_msg -

Copyright 1990-2012, James R. Larus.
All Rights Reserved. -
SPIM is distributed under a BSD license. I |
See the file README for a full copyright notice.

Select the Run/Continue option (as described in section 4.5) which will execute the
program up to the selected breakpoint.

Page 131



Appendix B — QtSpim Tutorial

When program execution reaches the breakpoint, it will be paused and a Breakpoint
dialog box display as shown in the below image.

 Breakpoint

Execution stopped at breakpoint at 0x0

I Continue ] |Single Step| | Abort

The program execution can be halted by selecting the Abort box. The breakpoint can be
ignored, thus continuing to the next breakpoint or program termination, whichever
comes first.
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However, typically the Single Step box will be selected enter the single step mode. The
following image shows the result of selecting Single Step. Note, the highlighted
instruction represents the next instruction to be executed and thus has not yet been
executed.

E & @ g a # P 0w @ = @

FP Regs Int Regs [16] Data Text

Int Regs [16] B ® Text =R
(UUSUUUUL] ZSAUUUUS  audiu wu, 9d, % ] . oauulu was wal s T ocuvp ~

BC = 400070 ~|| [0040000c] 00041080 =11 $2, $4, 2 ; : 511 $v0 a0 2

EPC = 400070 (004000101 00c23021 addu $6, $6, $2 i : addu $a2 a2 $v0

Cause = 24 [00400014] 0c100009 jal 0x00400024 [main] ; jal main

BadVAddr = 0 [00400018] 00000000 nop i : nop

Status = 3000££10 [0040001c] 3402000z eri $2, $0, 10 ; 1i sv0 10
[004000201 0000000c syscall ; : syscall # syscall 10 f{exit)

HI =0 [00400024] 2c011001  lui $1, 4097 [hdr] i la 5a0, hdr

Lo =0 [00400028] 34240040 ori %4, $1, 64 [hdr] E
[0040002c] 34020004 ori $2, $0, 4 ; 1i svo, 4

RO [xr0] = 0 [004000301 0000000c syscall i syscall # print header

Rl [at] = 0 [00400034] 2c081001 1lui $8, 4097 [array] i la $t0, array # set §t0 addr of array

R2 [v0] = 4 [00400038] 2c011001 1lui $1, 4097 ; Iw $t1, len # set $tl1 to length

R3 [vl] = 0 [0040003c] 8c29003c 1w §9, 60($1)

R4 [a0] = 10010040 [004000401 84120000 1w $18, 0(58) ;s 589: 1w §s2, (5t0) # set min, $t2 to ro1 1

R5 [al] = 7ffifadc [00400044] 84130000 1w $19, 0($8) ; 60: 1w $s53, (5t0) # set max, $t3 teo arrayl0]

Ré [a2] = T£fffas4d -|| [00400048] 8d0c0000 1w $12, 0($8) ; 62: lw 5t4, (5t0) # get arrayin]

R7 [a3] = 0 [0040004c] 01920822 slt $1, $12, §18 ; 64: bge $td, $s2, NotMin # is new m

R8 [t0] = 1001003c (004000501 10200002 beqg $1, $0, 8 [NotMin-0x00400050]

R3 [tl] = O [00400054] 000c%021 addu $18, $0, $1z2 ; 65: move $s2, 5td # set new min

R10 [t2] = O [00400058] 026c0D82a =1t $1, $19%, $12 ; 67: ble 5t4, 553, NotMax # is new max?

R11 [t3] = O [0040005c] 10200002 beq $1, $0, 8 [NotMax—0x0040005c]

Rlz [t4] = d [00400060]1 000c%321 addu $19, $0, $12 ;/ B8: move §s53, 5td # set new max

R13 [t5] = O [00400064] 212%£fff addi $9, $%, -1 ; 71: sub 5t1, $t1, 1 # decrement counter

R14 [t6] = O [00400068] 25080004 addiu $8, 58, 4 ; 72: addu 5t0, 5t0, 4 # increment addr by word

RIS [t7] = O [0040006c] 1520€ff7 bne $9, $0, -36 [loop-0x0040006c]

"1 [s0] - 0

R17 [s1] = O [00400074] 34240069 ori $4, $1, 105 [al_msg]

R18 [s2] = 7 [00400078] 34020004 ori $2, $0, 4 ; 81: 1i $v0, 4

R12 [s3] = 3d [0040007c] 0000000c sysecall ; 82: syscall # print "min = "

R20 [s4] = O [00400080] 00122021 addu $4, $0, $18 ; 84: move $al, §s2

Rzl [s5] = 0 || [00400084] 24020001 ori $2, $0, 1 ; B5: 1i §v0, 1

R22 [s6] = 0 [00400088] 0000000c syscall ; 86: syscall # print min

R23 [s7] = 0 [0040008c] 2c011001 1lui $1, 4097 [new_1n] ; 88: la $a0, new_Iln # print a newline

R24 [EB] = O (004000901 24240087 ori $4, 51, 103 [new_ln]

R25 [t9] = O [00400094] 24020004 orxi $2, $0, 4 ; 89: 1i sv0, 4

R26 [K0] = O [00400098] 0000000c syscall ; 90: syscall

R27 [kl] = O - | [0040009c] 2c011001 1lui $1, 4097 [a2_msg] ; 92: la $a0, aZ_msg -

Copyright 1990-2012, James R. Larus.

All Rights Reserved.

SPIM is distributed under a BSD license.

see the file README For a full copyright notice.

Running
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14.0 Appendix C — MIPS Instruction Set

This appendix presents a summary of the MIPS instructions as implemented within the
QtSpim simulator. The instructions a grouped by like-operations and presented
alphabetically.

The following table summarizes the notational conventions used.

Operand Notation | Description

Rdest Destination operand. Must be a register. Since it is a
destination operand, the contents will be over written
with the new result.

FRdest Destination operand. Must be a floating-point
register. Since it is a destination operand, the
contents will be over written with the new result.

Rsrc Source operand. Must be a register. Register value
is unchanged.
FRscr Source operand. Must be a floating-point register.
Register value is unchanged.
Src Source operand. Must be a register or an immediate
value. Value is unchanged.
Imm Immediate value
Mem Memory location. May be a variable name or an

indirect reference.

Refer to the chapter on Addressing Modes for more information regarding indirection.
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14.1 Arithmetic Instructions

Below are a summary of the basic integer arithmetic instructions.

abs Rdest, Rsrc

add Rdest, Rsrc, Src

addu Rdest, Rsrc, Src

div Rsrcl, Rsrc

divu Rsrcl, Rsrc

div Rdest, Rsrc, Src

divu Rdest, Rsrc, Src

mul Rdest, Rsrc, Src

mulo Rdest, Rsrc, Src

mulou Rdest, Rsrc, Src
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Absolute Value
Sets Rdest = absolute value of integer in
Rsrc

Addition (with overflow)
Sets Rdest = Rscr + Src (or imm)

Addition (without overflow)
Sets Rdest = Rscr + Src (or imm)

Divide (with overflow)
Set $lo = Rscr / Src (or imm)
Remainder is placed in $hi

Divide (without overflow)
Set $lo = Rscr / Src (or imm)
Remainder is placed in $hi

Divide (with overflow)
Sets: Rdest = Rscr / Src (or imm)

Divide (without overflow)
Sets: Rdest = Rscr / Src (or imm)

Multiply (without overflow)
Sets: Rdest = Rscr ( Src (or imm)

Multiply (with overflow)
Sets: Rdest = Rscr * Src (or imm)

Unsigned Multiply (with overflow)
Sets: $lo = Rscr * Src (or imm)



mult Rsrc, Rsrc

multu Rsrc, Rsrc

neg Rdest, Rsrc

negu Rdest, Rsrc

rem Rdest, Rsrc, Src

remu Rdest, Rsrc, Src

sub Rdest, Rsrc, Src

subu Rdest, Rsrc, Src

Appendix C — MIPS Instruction Set

Multiply
Sets $hi:$lo = Rscr / Src (or imm)

Unsigned Multiply
Sets $hi:$lo = Rscr / Src (or imm)

Negate Value (with overflow)
Rdest = negative of integer in register
Rsrc

Negate Value (without overflow)
Rdest = negative of integer in register
Rsrc

Remainder after division
Rdest = remainder from Rscr / Src (or
imm)

Unsigned Remainder
Rdest = remainder from Rscr / Src (or
imm)

Subtract (with overflow)
Rdest = Rsrc — Src (or imm)

Subtract (without overflow)
Rdest = Rsrc — Src (or imm)
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14.2 Comparison Instructions

Below are a summary of the basic integer comparison instructions. Programmers
generally use the conditional branch and jump instructions as detailed in the next
section.

seq Rdest, Rsrcl, Src2 Set Equal
- Sets register Rdest to 1 if register Rsrcl
equals Src2 and to be 0 otherwise

sge Rdest, Rsrcl, Src2 Set Greater Than Equal
- Sets register Rdest to 1 if register Rsrcl
greater than or equal Src2 and to 0
otherwise

sgeu Rdest, Rsrcl, Src2 Set Greater Than Equal Unsigned
- Sets register Rdest to 1 if register Rsrcl
is greater than or equal to Src2 and to 0
otherwise

sgt Rdest, Rsrcl, Src2 Set Greater Than
- Sets register Rdest to 1 if register Rsrcl
greater than Src2 and to 0 otherwise

sgtu Rdest, Rsrcl, Src2 Set Greater Than Unsigned
- Sets register Rdest to 1 if register Rsrc1
is greater than Src2 and to 0 otherwise

sle Rdest, Rsrcl, Src2 Set Less Than Equal
- Sets register Rdest to 1 if register Rsrc1
is less than or equal to Src2 and to 0
otherwise

sleu Rdest, Rsrcl, Src2 Set Less Than Equal Unsigned
- Sets register Rdest to 1 if register Rsrcl
is less than or equal to Src2 and to 0
otherwise
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slt Rdest, Rsrcl,

slti Rdest, Rsrcl,

sltu Rdest, Rsrcl,

sltiu Rdest, Rsrcl,

sne Rdest, Rsrcl,

Src2

Imm

Src2

Imm

Src2

Appendix C — MIPS Instruction Set

Set Less Than
- Sets register Rdest to 1 if register Rsrcl
is less than to Src2 and to 0 otherwise

Set Less Than Immediate

- Sets register Rdest to 1 if register Rsrcl
is less than or equal to Imm and to 0
otherwise

Set Less Than Unsigned
- Sets register Rdest to 1 if register Rsrc1
is less than to Src2 and to 0 otherwise

Set Less Than Unsigned Immediate

- Sets register Rdest to 1 if register Rsrcl
is less than Src2 (or Imm) and to 0
otherwise

Set Not Equal
- Sets register Rdest to 1 if register Rsrc1
is not equal to Src2 and to 0 otherwise

14.3 Branch and Jump Instructions

Below are a summary of the basic conditional branch and jump instructions.

b 1label

bczt 1label

Branch instruction
- Unconditionally branch to the instruction
at the label

Branch Co-processor z True

- Conditionally branch to the instruction at
the label if co-processor z's condition flag
is true (false)
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bczf 1label

beq Rsrcl, Src2, label

beqz Rsrc, label

bge Rsrcl, Src2, label

bgeu Rsrcl, Src2, label

bgez Rsrc, label

bgezal Rsrc, label
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Branch Co-processor z False

- Conditionally branch to the instruction at
the label if co-processor z's condition flag
is true (false)

Branch on Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
equals Src2

Branch on Equal Zero
- Conditionally branch to the instruction at
the label if the contents of Rsrc equals 0

Branch on Greater Than Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are greater than or equal to Src2

Branch on GTE Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrc1l
are greater than or equal to Src2

Branch on Greater Than Equal Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than or equal to 0

Branch on Greater Than Equal Zero and
Link

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than or equal to 0. Saves the address of
the next instruction in $ra



bgt Rsrcl, Src2, label

bgtu Rsrcl, Src2, label

bgtz Rsrc, label

ble Rsrcl, Src2, label

bleu Rsrcl, Src2, label

blez Rsrc, label

bgezal Rsrc, label
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Branch on Greater Than

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
is greater than Src2

Branch on Greater Than Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are greater than Src2

Branch on Greater Than Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
than 0

Branch on Less Than Equal

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than or equal to Src2

Branch on LTE Unsigned

- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than or equal to Src2

Branch on Less Than Equal Zero

- Conditionally branch to the instruction at
the label if the contents of Rsrc are less
than or equal to 0

Branch on Greater Than Equal Zero And
Link

- Conditionally branch to the instruction at
the label if the contents of Rsrc are greater
or equal to 0 or less than 0, respectively.
Saves the address of the next instruction
in register $ra
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bltzal Rsrc, label Branch on Less Than And Link
- Conditionally branch to the instruction at
the label if the contents of Rsrc are less
than O or less than 0, respectively. Save
the address of the next instruction in
register $ra

blt Rsrcl, Src2, label Branch on Less Than
- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than Src2

bltu Rsrcl, Src2, label Branch on Less Than Unsigned
- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are less than Src2

bltz Rsrc, label Branch on Less Than Zero
- Conditionally branch to the instruction at

the label if the contents of Rsrc are less
than O

bne Rsrcl, Src2, label Branch on Not Equal
- Conditionally branch to the instruction at
the label if the contents of register Rsrcl
are not equal to Src2

bnez Rsrc, label Branch on Not Equal Zero
- Conditionally branch to the instruction at
the label if the contents of Rsrc are not
equal to 0

j label Jump

- Unconditionally jump to the instruction
at the label
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jal label Jump and Link
- Unconditionally jump to the instruction
at the label or whose address is in register
Rsrc. Saves the address of the next
instruction in register $ra

jalr Rsrc Jump and Link Register
- Unconditionally jump to the instruction
at the label or whose address is in register
Rsrc. Saves the address of the next
instruction in register $ra

jr Rsrc Jump Register
- Unconditionally jump to the instruction
whose address is in register Rsrc

14.4 Load Instructions

Below are a summary of the basic load instructions.

la Rdest, address Load Address

- Load computed address, not the contents
of the location, into register Rdest

lb Rdest, address Load Byte
- Load the byte at address into register
Rdest. The byte is sign-extended by the 1b,
but not the [bu, instruction

lbu Rdest, address Load Unsigned Byte
- Load the byte at address into register
Rdest. The byte is sign-extended by the Ib,
but not the Ibu, instruction

1d Rdest, address Load Double-Word

- Load the 64-bit quantity at address into
registers Rdest and Rdest + 1

Page 143



Appendix C — MIPS Instruction Set

lh Rdest, address

lhu Rdest, address

lw Rdest, address

lwcz Rdest, address

lwl Rdest, address

lwr Rdest, address

ulh Rdest, address
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Load Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword
is sign-extended

Load Unsigned Halfword

- Load the 16-bit quantity (halfword) at
address into register Rdest. The halfword
is not sign-extended

Load Word
- Load the 32-bit quantity (word) at
address into register Rdest

Load Word Co-processor z
- Load the word at address into register
Rdest of co-processor z (0-3)

Load Word Left

- Load the left bytes from the word at the
possibly-unaligned address into register
Rdest

Load Word Right

- Load the right bytes from the word at the
possibly-unaligned address into register
Rdest

Unaligned Load Halfword

- Load the 16-bit quantity (halfword) at
the possibly-unaligned address into
register Rdest. The halfword is sign-
extended.
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ulhu Rdest, address Unaligned Load Halfword Unsigned
- Load the 16-bit quantity (halfword) at
the possibly-unaligned address into
register Rdest. The halfword is not sign-
extended

ulw Rdest, address Unaligned Load Word
- Load the 32-bit quantity (word) at the
possibly-unaligned address into register

Rdest

1li Rdest, imm Load Immediate
- Move the immediate imm into register
Rdest

lui Rdest, imm Load Upper Immediate

- Load the lower halfword of the
immediate imm into the upper halfword of
register Rdest. The lower bits of the
register are set to 0

14.5 Logical Instructions

Below are a summary of the basic logical instructions.

and Rdest, Rsrcl, Src2 AND

andi Rdest, Rsrcl, Imm AND Immediate

- Put the logical AND of the integers from
register Rsrc1 and Src2 (or Imm) into
register Rdest

nor Rdest, Rsrcl, Src2 NOR

- Put the logical NOR of the integers from
register Rsrc1 and Src2 into register Rdest
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not Rdest, Rsrc NOT
- Put the bitwise logical negation of the
integer from register Rsrc into register
Rdest

or Rdest, Rsrcl, Src2 OR
- Put the logical OR of the integers from
register Rsrc1 and Src2 into register Rdest

ori Rdest, Rsrcl, Imm OR Immediate
- Put the logical OR of the integers from
register Rsrcl and Imm into register Rdest

rol Rdest, Rsrcl, Src2 Rotate Left
- Rotate the contents of register Rsrc1 left
by the distance indicated by Src2 and put
the result in register Rdest

ror Rdest, Rsrcl, Src2 Rotate Right
- Rotate the contents of register Rsrc1 left
(right) by the distance indicated by Src2
and put the result in register Rdest

sll Rdest, Rsrcl, Src2 Shift Left Logical
- Shift the contents of register Rsrc1 left
by the distance indicated by Src2 and put
the result in register Rdest

sllv Rdest, Rsrcl, Rsrc2 Shift Left Logical Variable
- Shift the contents of register Rsrc1 left
by the distance indicated by Rsrc2 and put
the result in register Rdest

sra Rdest, Rsrcl, Src2 Shift Right Arithmetic
- Shift the contents of register Rsrc1 right
by the distance indicated by Src2 and put
the result in register Rdest
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srav Rdest, Rsrcl, Rsrc2

srl Rdest, Rsrcl, Src2

srlv Rdest, Rsrcl, Rsrc2

xor Rdest, Rsrcl, Src2

xori Rdest, Rsrcl, Imm

14.6 Store Instructions
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Shift Right Arithmetic Variable

- Shift the contents of register Rsrc1 right
by the distance indicated by Rsrc2 and put
the result in register Rdest

Shift Right Logical

- Shift the contents of register Rsrc1 right
by the distance indicated by Src2 and put
the result in register Rdest

Shift Right Logical Variable

- Shift the contents of register Rsrc1 right
by the distance indicated by Rsrc2 and put
the result in register Rdest

XOR
- Put the logical XOR of the integers from
register Rsrc1 and Src2 into register Rdest

XOR Immediate
- Put the logical XOR of the integers from
register Rsrcl and Imm into register Rdest

Below are a summary of the basic store instructions.

sb Rsrc, address

sd Rsrc, address

Store Byte
- Store the low byte from register Rsrc at
address

Store Double-Word

- Store the 64-bit quantity in registers Rsrc
and Rsrc + 1 at address
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sh Rsrc, address Store Halfword
- Store the low halfword from register
Rsrc at address

sw Rsrc, address Store Word
- Store the word from register Rsrc at
address

swcz Rsrc, address Store Word Co-processor z

- Store the word from register Rsrc of co-
processor z at address

swl Rsrc, address Store Word Left
- Store the left bytes from register Rsrc at
the possibly-unaligned address

swr Rsrc, address Store Word Right
- Store the right bytes from register Rsrc
at the possibly-unaligned address

ush Rsrc, address Unaligned Store Halfword
- Store the low halfword from register
Rsrc at the possibly-unaligned address

usw Rsrc, address Unaligned Store Word

- Store the word from register Rsrc at the
possibly-unaligned address
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14.7 Data Movement Instructions

Below are a summary of the basic data movement instructions. The data movement
implies data movement between registers.

move Rdest, Rsrc Move the contents of Rsrc to Rdest.
- The multiply and divide unit produces its
result in two additional registers, hi and lo.
These instructions move values to and
from these registers. The multiply, divide,
and remainder instructions described
above are pseudo-instructions that make it
appear as if this unit operates on the
general registers and detect error
conditions such as divide by zero or
overflow.

mfhi Rdest Move from $hi
- Move the contents of the hi register to
register Rdest

mflo Rdest Move from $lo
- Move the contents of the lo register to
register Rdest

mthi Rdest Move to $hi
- Move the contents register Rdest to the
hi register.
- Note, Co-processors have their own
register sets. This instructions move values
between these registers and the CPU's
registers.

mtlo Rdest Move to $lo
- Move the contents register Rdest to the
lo register.
- Note, Co-processors have their own
register sets. This instructions move values
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between these registers and the CPU's
registers.

mfcl Rdest, FRsrc Move From Co-processor 1
- Move the contents of co-processor 1 float
register FRsrc to CPU integer register
Rdest

mfcl.d Rdest, FRsrcl Move Double From Co-processor 1
- Move the contents of floating point
registers FRsrcl and FRsrc1+1 to CPU
integer registers Rdest and Rdest + 1

mtcl Rsrc, FRdest Move To Co-processor 1
- Move the contents of CPU integer
register Rsrc to co-processor 1 float
register FRdest

mtcl.d Rsrc, FRdest Move To Co-processor 1
- Move the contents of CPU integer
registers Rsrc and Rsrc+1 to co-processor
1 float registers Frdest and FRdest+1.

14.8 Floating Point Instructions

The MIPS has a floating point co-processor (numbered 1) that operates on single
precision (32-bit) and double precision (64-bit) floating point numbers. This co-
processor has its own registers, which are numbered $f0 - $f31. Because these registers
are only 32-bits wide, two of them are required to hold doubles. To simplify matters,
floating point operations only use even-numbered registers - including instructions that
operate on single floats. Values are moved in or out of these registers a word (32-bits) at
a time by lwcl, swcl, mtcl, and mfc1 instructions described above or by the Ls, 1.d, s.s,
and s.d pseudo-instructions described below. The flag set by floating point comparison
operations is read by the CPU with its bc1t and bc1f instructions. In all instructions
below, FRdest, FRsrc1, FRsrc2, and FRsrc are floating point registers (e.g., $£2).
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Floating Point Absolute Value Double

- Compute the absolute value of the
floating float double in register FRsrc and
put it in register FRdest

Floating Point Absolute Value Single

- Compute the absolute value of the
floating float single in register FRsrc and
put it in register FRdest

Floating Point Addition Double

- Compute the sum of the floating float
doubles in registers FRsrc1 and FRsrc2
and put it in register FRdest

Floating Point Addition Single

- Compute the sum of the floating float
singles in registers FRsrc1 and FRsrc2 and
put it in register FRdest

Compare Equal Double

- Compare the floating point double in
register FRsrc1 against the one in FRsrc2
and set the floating point condition flag
true if they are equal

Compare Equal Single

- Compare the floating point single in
register FRsrc1 against the one in FRsrc2
and set the floating point condition flag
true if they are equal
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c.le.d

c.le.s

c.lt.d

c.lt.s

cvt.d.s

FRsrcl, FRsrc2

FRsrcl, FRsrc2

FRsrcl, FRsrc2

FRsrcl, FRsrc2

FRdest, FRsrc

cvt.d.w FRdest, FRsrc
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Compare Less Than Equal Double

- Compare the floating point double in
register FRsrc1 against the one in FRsrc2
and set the floating point condition flag
true if the first is less than or equal to the
second

Compare Less Than Equal Single

- Compare the floating point single
precision in register FRsrc1 against the
one in FRsrc2 and set the floating point
condition flag true if the first is less than
or equal to the second

Compare Less Than Double

- Compare the floating point double in
register FRsrc1 against the one in FRsrc2
and set the condition flag true if the first is
less than the second

Compare Less Than Single

- Compare the floating point single in
register FRsrc1 against the one in FRsrc2
and set the condition flag true if the first is
less than the second

Convert Single to Double

- Convert the single precision floating
point number in register FRsrc to a double
precision number and put it in register
FRdest

Convert Integer to Double

- Convert the integer in register FRsrc to a
double precision number and put it in
register FRdest
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cvt.s.d FRdest, FRsrc Convert Double to Single
- Convert the double precision floating
point number in register FRsrc to a single
precision number and put it in register
FRdest

cvt.s.w FRdest, FRsrc Convert Integer to Single
- Convert the integer in register FRsrc to a
single precision number and put it in
register FRdest

cvt.w.d FRdest, FRsrc Convert Double to Integer
- Convert the double precision floating
point number in register FRsrc to an
integer and put it in register FRdest

cvt.w.s FRdest, FRsrc Convert Single to Integer
- Convert the single precision floating
point number in register FRsrc to an
integer and put it in register FRdest

div.d FRdest, FRsrcl, Floating Point Divide Double

FRsrc2 - Compute the quotient of the floating
float doubles in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

div.s FRdest, FRsrcl, Floating Point Divide Single

FRsrc2 - Compute the quotient of the floating
float singles in registers FRsrc1 and
FRsrc2 and put it in register FRdest.

l.d FRdest, address Load Floating Point Double

- Load the floating float double at address
into register FRdest
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l.s FRdest, address

mov.d FRdest, FRsrc

mov.s FRdest, FRsrc

mul.d FRdest, FRsrcl,
FRsrc2

mul.s FRdest, FRsrcl,
FRsrc2

neg.d FRdest, FRsrc

neg.s FRdest, FRsrc

s.d FRdest, address

s.s FRdest, address
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Load Floating Point Single
- Load the floating float single at address
into register FRdest

Move Floating Point Double
- Move the floating float double from
register FRsrc to register FRdest

Move Floating Point Single
- Move the floating float single from
register FRsrc to register FRdest

Floating Point Multiply Double

- Compute the product of the floating float
doubles in registers FRsrc1 and FRsrc2
and put it in register FRdest

Floating Point Multiply Single

- Compute the product of the floating float
singles in registers FRsrc1 and FRsrc2 and
put it in register FRdest

Negate Double
- Store the floating float double in register
FRdest at address

Negate Single
Store the floating float single in register
FRdest at address

Store Floating Point Double
- Store the floating float double in register
FRdest at address

Store Floating Point Single
- Store the floating float single in register
FRdest at address



sub.d FRdest, FRsrcl,
FRsrc2

sub.s FRdest, FRsrcl,
FRsrc2
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Floating Point Subtract Double

- Compute the difference of the floating
float doubles in registers FRsrc1 and
FRsrc2 and put it in register FRdest

Floating Point Subtract Single

- Compute the difference of the floating
float singles in registers FRsrc1 and
FRsrc2 and put it in register FRdest

14.9 Exception and Trap Handling Instructions

Below are a summary of the exception and trap instructions.

rfe

syscall

break n

nop

Return From Exception
- Restore the Status register

System Call

- Transfer control to system routine.
Register $v0 contains the number of the
system call

Break

- Cause exception n.

- Note, Exception 1 is reserved for the
debugger

No operation
- Do nothing
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15.0 Appendix D — ASCII Table

This appendix provides a copy of the ASCII Table for reference.

Char | Dec | Hex Char | Dec | Hex Char | Dec | Hex Char | Dec | Hex
NUL 0 0x00 spc 32 | 0x20 @ 64 | 0x40 ) 96 | 0x60
SOH| 1 | 0x01 ! 33 | 0x21 A 65 | 0x41 a 97 | 0x61
STX 2 0x02 " 34 | 0x22 B 66 | 0x42 b 98 | 0x62
ETX | 3 | 0x03 # 35 | 0x23 C 67 | 0x43 c 99 | 0x63
EOT 4 0x04 $ 36 | 0x24 D 68 | 0x44 d 100 | 0x64
ENQ 5 0x05 % 37 | 0x25 E 69 | 0x45 e 101 | 0x65
ACK| 6 | 0x06 & 38 | 0x26 F 70 | 0x46 f 102 | 0x66
BEL 7 0x07 ! 39 | 0x27 G 71 | 0x47 g 103 | 0x67
BS 8 | 0x08 ( 40 | 0x28 H 72 | 0x48 h 104 | 0x68
TAB 9 0x09 ) 41 | 0x29 I 73 | 0x49 i 105 | 0x69
LF 10 | 0x0A * 42 | 0x2A J 74 | 0x4A j 106 | 0x6A
vT 11 | 0x0B + 43 | 0x2B K 75 | 0x4B k 107 | 0x6B
FF 12 | 0x0C , 44 | 0x2C L 76 | 0x4C 1 108 | 0x6C
CR 13 | 0x0D - 45 | 0x2D M 77 | 0x4D m 109 | 0x6D
SO 14 | 0xOE . 46 | 0x2E N 78 | 0x4E n 110 | 0x6E
SI 15 | OxOF / 47 | 0x2F o 79 | 0x4F 0 111 | Ox6F
DLE | 16 | 0x10 0 48 | 0x30 P 80 | 0x50 P 112 | 0x70
DC1 | 17 | 0x11 1 49 | 0x31 Q 81 | 0x51 q 113 | 0x71
DC2 | 18 | 0x12 2 50 | 0x32 R 82 | 0x52 r 114 | 0x72
DC3 | 19 | 0x13 3 51 | 0x33 S 83 | 0x53 s 115 | 0x73
DC4 | 20 | 0x14 4 52 | 0x34 T 84 | 0x54 t 116 | 0x74
NAK | 21 | 0x15 5 53 | 0x35 U 85 | 0x55 u 117 | 0x75
SYN | 22 | 0x16 6 54 | 0x36 \'% 86 | 0x56 v 118 | 0x76
ETB | 23 | 0x17 7 55 | 0x37 w 87 | 0x57 w 119 | 0x77
CAN | 24 | 0x18 8 56 | 0x38 X 88 | 0x58 X 120 | 0x78
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EM 25 | 0x19
SUB | 26 |0x1A
ESC | 27 | 0x1B
FS 28 | 0x1C
GS 29 | 0x1D
RS 30 | 0x1E
us 31 | Ox1F

57 | 0x39 Y 89 | 0x59 y 121 | 0x79
58 | 0x3A Z 90 | 0x5A z 122 | 0x7A
59 | 0x3B [ 91 | 0x5B { 123 | 0x7B
60 | 0x3C \ 92 | 0x5C | 124 | 0x7C
61 | 0x3D 1 93 | 0x5D } 125 | 0x7D
62 | 0x3E A 94 | 0x5E ~ 126 | 0x7E
63 | 0x3F 95 | 0x5F DEL | 127 | 0x7F

For additional information and a more complete listing of the ASCII codes (including

the extended ASCII characters), refer to http://www.asciitable.com/
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16.0 Alphabetical Index

03Xttt 26
ADS. e 30
Add..eeeeeieeee e 29
Addressing Modes..........ccooueveerneeernunennne 53
AAAU...eeeiiieiieecee e 29
Allocate Memory.........ccceeeeerceeereeennnneen. 86
AN, 34
Architecture Overview..........ccceeevuveeennen. 3
Argument Transmission...........cccecveeennne 70
Argument Transmission Conventions....70
Assembler Directives........cccceeeveeriueeennne 19
Assembly Process.........ccoceeverieeneeennneenne 19
assembly source file.........cccccveeeeuniennnnne. 19
Bare-Instructions........c..coeeeeeueeeveveeeeeeeeen. 25
1T« U UPPURRPPP 40
Dttt 40
0 < P OO PPPTPRRPP 40
biased eXponent.........c.ccceceeeveeerieernnenne 15
Dle.eeiiiiiieeee e 40
Bl 40
DIttt 40
DY ettt 4
byte addressable..........ccccoevviiriiiiniiiennnnnn. 4
Call Frame........cccceeveveeneenneennieeeeene 73
Call-by-Reference.........c.cccceeeereevvercueenns 70
Call-by-Value........cccceevierviernieniieeeennne 70
Caller Conventions........ccccceceeeeeeuvveeeeennnns 68
Column-Major........ccoeveerierriieeeeieeeenne 95
COMIMENTS...ccerrrrrierrrriieeerrireeeeerereeeeeeens 19
Conditional Control Instructions............ 40
CONSLANLS....eevreeeeeiireeeeriiiireeeeeeeeeeeeeens 22
Control Instructions..........ccceeeeeeruveeennnee. 39

CPU IegiSter....ceeireureeeeeiiiiirireeeeeeeeeeeaeenns 6
Data Declarations........c.cccceeeveeeveereeenne 20
Data Movement..........ccceecuveeeeeiinnneeeennnn. 26
Data representation............cceeeeuvveeeernnnne 11
data LYPES..ccereeeereeeiieenieeenieeenirreeeeenaens 4
Destination operand..........cc.cceccevveenueennne 25
Direct addressing mode..............cuveeennn. 53
displacement addressing.........c...ccecueenee. 54
iVt 30
AIVUL ettt 30
double......cooiiiiie, 4
double-precision...........cecceevveevvernneennne. 43
end direCtive........c.ceeeeeveeeenieeennieeeennee. 68
entry point directive..........coceeeeveeenennne. 68
exCception Cause regiSter.....ccoovvuuveerervurenenes 8
File Close........cccoevivieninininicicicreeee 86
File Open.....ccccueeviievniieiiiiieeeeeiieee e, 86
file open access flags......c..cccceevveeenennnee. 86
File Read......cccooeeiiiiiiiiiiiieeeeeeee 86
File WIite......cccccevininininiiiiieceeeee 86
£10AL ettt 4
floating point registers.........ccccceeverrveenen. 6
Floating-Point Arithmetic Operations....47
Floating-Point Data Declarations........... 22
Floating-Point Data Movement.............. 42
Floating-Point Instructions..................... 42
Floating-Point Register Usage................ 42
Floating-point Representation................ 14
FPU CO-PrOCESSOL.....cccovvuurirriirieeeeeeeeenenns 9
FRAESE ..o 26
FRSIC..eveiiiiiiiieeeeeceececeeceeeee 26
Function Results.........ccceeeeveierviennnnennne. 71

Page 159



Alphabetical Index

global declaration directive.................... 68
halfword.........coceeveriininnineeeeeee 4
DEAD...cc ettt 6
IEEE 32-bit Representation.................... 14
IEEE 64-bit Representation.................... 17
IEEE 754 32-bit floating-point standard 14
IF statement..........cceeevueereineeeerinnnneecennn. 40
Immediate addressing mode................... 53
Immediate value.........ccccceeeviiernineennnnee. 26
indirect memory access..........cccecuveernnen. 54
Indirection.........ccceeeeeieenienneenieeceeene 54
Integer / Floating-Point Conversion
INStrucCtions......cuveeeeeceeeeieiiieiieeeee 45
Integer / Floating-Point Register Data
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