
Ring Oscillator PUF Design and Results

Michael Patterson

Reconfigurable Computing Laboratory

Iowa State University

mjpatter@iastate.edu

Joseph Zambreno

Reconfigurable Computing Laboratory

Iowa State University

zambreno@iastate.edu

Chris Sabotta

Reconfigurable Computing Laboratory

Iowa State University

csabotta@iastate.edu

Sudhanshu Vyas

Reconfigurable Computing Laboratory

Iowa State University

spvyas@iastate.edu

Aaron Mills

Reconfigurable Computing Laboratory

Iowa State University

ajmills@iastate.edu

1. Motivation and Background

A Physical Unclonable Function (PUF) is a function in

some physical device that is easy to evaluate but hard to pre-

dict. In many ways it is the hardware equivalent of a math-

ematical one-way function. Every challenge should map to

a specific response, but this mapping should be impossible

to predict and different for every physical device.

An on-chip PUF is very useful for several reasons. First,

it provides a way to uniquely identify a given device. This

could be used for secure chip authentication or for protec-

tion of Intellectual Property. Second, since an FPGA PUF

is based on intrinsic randomness, it could also serve as a

Random Number Generator. Finally, and most importantly,

a PUF provides all this functionality without storing any

secret information on the chip. Most solutions to the pre-

viously listed problems involve storing some type of key

or seed value on the chip. This poses many security haz-

ards. However, a PUF relies on the characteristics of the

chip itself, which are considered impossible to observe and

duplicate.

There are a wide variety of PUF designs, but the only

ones relavant to our interests are those that can be imple-

mented on an FPGA. There are basically five designs that

meet these requirements.

1)The first PUF designed for an FPGA was introduced

in [1]. The proposed ”Arbiter PUF” design can be seen in

Figure 1. Two paths are created by connecting a number

of ”switch delay elements” in series. Each element uses a

two-to-one multiplexer to control which path is taken by the

inputs. The challenge bits X are used as the select bits to the

multiplexers, and the response of the PUF is based on which

path leads to the faster signal propogation.

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

�

X[0] X[1] X[i-1] X[0]

Arbiter

D Q

Y

Figure 1. Arbiter PUF Design

However, there are severe problems with using this type

of PUF on an FPGA. The delays due to the routing done

automatically by the tools completely overshadow the small

delays due to the process variability. Since the basis for the

PUF is the randomness intrinsic to the process variability,

this design will not function well.

2)Another PUF design is described in [5]. This Ring

Oscillator PUF is composed of many delay loops that os-



cillate with a particular frequency. They are laid out iden-

tically, but the minor variations in manufacturing lead to

loops with slightly different frequencies. The loops drive

counters which are used to produce the response bits to a

given challenge. Figure 2 shows the structure of this type of

PUF.

�

�

�

�

�

�

> ?

counter

counter

Y

Input

Figure 2. Ring Oscillator PUF Design

This design also suffers from the same drawbacks as the

first one. The randomness is dominated by the difference in

routing, not by the differences in process variation. How-

ever, by using hard macros to make the routing very sym-

metric, we hope to solve this problem. Our methods for

accomplishing this are described further in the following

section.

3)A different design option is described in [2]. This de-

sign does not depend on laying out a certain circuit and pro-

gramming it onto an FPGA. Instead, it relies on the SRAM

that is present on most modern FPGAs. Since an SRAM

bit assumes a ”random” value of 0 or 1 when it is originally

given power, these bits can be used to provide a unique re-

sponse.

However, we decided not to pursue this design for the

current CSAW competition for a few reasons. First, we did

not find many ways in which this design could be improved

or expanded. Also, more and more FPGAs provide some

form or option of SRAM initialization. This functionality

would prevent the use of an SRAM PUF.

4)Another design very similar to the SRAM PUF is de-

scribed in [3]. This Butterfly PUF is based on unstable

cross-coupled circuits and can be seen in Figure 3. It ba-

sically serves the same purpose as the SRAM design, but

it can be implemented on any FPGA, not just those with

SRAM.

5)Finally, yet another design is discussed in [4]. This

design actually uses a bitfile to reprogram the FPGA as the

D Q

Latch 1

CLR

PRE

CLK

0

D Q

Latch 1

CLR

PRE

CLK

0

out

excite

Figure 3. Butterfly PUF Design

challenge. The characteristics of the programmed FPGA

then serve as the response. While this approach is rather

unique and interesting, it is not within the scope of this com-

petion.

2. Design

As previously mentioned, we chose to implement a Ring

Oscillator PUF. We started with a fairly basic design. Figure

4 shows a five-stage ring oscillator that serves as the basis

of our PUF. It includes an enable bit so that only the ring

oscillators that are currently being used will oscillate. This

is needed to prevent our chip from overheating.

enable
output

Figure 4. Basic Ring Oscillator

Figure 5 shows how we are using 256 ring oscillators in

combination with some other components to generate the

output. A decoder is used to generate the enable bits for the

oscillators, and a mux is used to choose which ring oscilla-

tor gets fed into the counter based on the input bits. The two

2



counters are then compared, and a one is output if the first

counter value is larger than the second. A zero is output if

this is not the case. This basic block is used eight times to

generate the eight required output bits. The testing and re-

sults generated by this PUF design are discussed in sections

3 and 4.

...

Decoder 256:1 Mux

Counter

Ro0

Ro1

Ro2

Ro255

Counter

Comparison 

Unit

Output

Input Challenge

x8

256:1 Mux

Figure 5. Our PUF Design

As mentioned earlier, this ring oscillator PUF design can

be greatly improved by manual routing of the ring oscilla-

tors. This guarantees that every instance of a ring oscillator

has identical routing, so the delays truly are based on the

physical process variations and not the automatic routing

process. In addition to improving the characteristics of a

PUF, it also packs the ring oscillators into fewer slices re-

sulting in a more efficient use of resources. Figure 6 shows

the resources used by a ring oscillator that is not manually

placed. In contrast, figure 7 shows the resources used by

not one, but eight ring osciallators that are manually placed

through hard macros. When not manually routed, a single

ring oscillator takes four slices. However, with manual rout-

ing eight ring oscillators can be packed into ten slices. This

is a drastic improvement. Unfortunately, due to time con-

straints and bugs in the tools, we were unable to implement

and test this design.

3. Experimental Setup

The success of a PUF can be viewed by its performance

in three major categories. First, for a challenge that is re-

peatedly given to a PUF, the response should be consistent.

Second, for two challenges that are very similar, (having

only one different bit), the two responses should be very

unique. This uniqueness is often measured by computing

the hamming distance (number of changed bits) between

two responses. Finally, for two instances of the PUF, the

Figure 6. Automatically Routed RO

Figure 7. Manually Routed RO

responses to the same challenge should have a significant

hamming distance as well. All three of these components

are critically important to the PUF, as a substantial short

coming in any of the categories can render it useless. In

order to evaluate the performance of our PUF design, we

designed the following tests. Every test was carried out on

a Xilinx Spartan-6 LX45 FPGA.

3.1. One PUF, One Challenge Test

A single PUF is given the same 16-bit challenge 32

times, and this is repeated for 128 randomly generated chal-

lenges. Every response to a given challenge should be ex-

actly the same, so the percentage of responses that differ

will be calculated. In addition to this, the analysis will also

be applied to individual bits. In both cases, the ideal value

3



is a 0 percent change.

3.2. One PUF, Multiple Challenges Test

A single PUF is given 1024 different challenges consist-

ing of a Gray Code pattern (a series of numbers that tours

unique data values by changing only one bit at a time). The

average hamming distance between adjacent responses will

be calculated. Again, this will also be done at the bitwise

level. In both cases, the ideal average hamming distance is

50 percent.

3.3. Multiple PUFs, One Challenge Test

Multiple PUFs are given the same series of 1024 chal-

lenges. The average hamming distance between responses

is calculated. This value is also calculated at the bitwise

level. In both cases, the ideal average hamming distance is

50 percent.

4. Analysis

The three tests described in the previous section were

performed on our PUF design, and the following results

were gathered.

Figure 8. One PUF, One Challenge Test

The whole 8-bit response was correct 94.68 percent of

the time.

Figure 9. One PUF, Multiple Challenges Test

On average, 2.88 bits change in the response for a one

bit change in input.

Figure 10. Multiple PUFs, One Challenge Test

On average, 46.16 percent of the bits are different be-

tween responses of two different PUFs to the same chal-

lenge.

As the previous results show, our PUF design is very

consistent. The bitwise results of the first test show that any

given bit will change only about once in 100 challenges,

and the overall response will be correct almost 95 percent

of the time. The second group of test results shows that a

change in one input bit results in a change on average of al-

most three output bits. Ideally this value would be closer to

four, but three is high enough that our design is still able to

function well as a PUF. Finally, the results of the third test

show that different instances of our design generate differ-

ent responses to a given challenge. Over 40 percent of the

bits were different in responses from different PUFs, which

allows instances of our design to easily be uniquely identi-

fied.

5. Temperature Stability

Observing consistency in the face of wide ambient tem-

perature changes is also essential. Being a delay-based

PUF, our design relies on the propagation delays inherent

in the interconnects and the LUTs within the FPGA. How-

ever, since the resistance of the interconnects in particular

change with temperature, so to their RC delays. For our

PUF we also performed a test to determine how consistent

our results are as temperature varies from 10C to 65C. The

experiment is designed the same way as the One PUF, one

Challenge test, with the exception that the test is repeated

every 5C. The number of bits that differed between 10C and

65C are shown below.

Response Bit 0 1 2 3 4 5 6 7

Ham. Dist.(%) 0.3 2 0.1 0.6 0 0 0.2 2

Figure 11. Temperature Stability

The results are quite close to the desired 0% change. In

addition, a pattern was observed in the experiment. The

majority of the bit observed bit changes occurred for only

a small subset of the input challenges. This suggests that

some challenges are more robust than others. Given that the

delay path through the multiplexors will change based on

the challenge, it is assumed that some routes are more sus-

ceptible to temperature change than others (for example, if

the interconnects are longer). It is proposed then that sim-

ply constraining the challenge set to those that are the most

robust will drive the temperature-induced error rate down to

near-zero.

6. Conclusions and Future Work

We were able to successfully create and implement a de-

sign that meets all the criteria for being a PUF. Our testing

and analysis demonstrated the functionality of our design.

4



However, there are definitely areas in which additional work

could be done, especially in the area of testing. We would

like to be able to test the full input challenge space, and in

general increase the repetitions of each test in order to in-

crease the statistical significance of our results.

We would also like to explore using larger bit-widths to

increase the security of the PUF. Unfortunately, our design

(especially the multiplexors) consumed all the resources of

our Xilinx Spartan-6 LX45. Therefore, our design would

have to be refactored for size-reduction. For example, the

calculation could be divided into multiple phases in which

subsets of the challenge vector are shifted in one-by-one.

This would allow greater hardware reuse.

Finally, we would like to place our PUF on multiple dif-

ferent FPGAs and analyze some results. It would be inter-

esting to see the different characteristics between multiple

PUFs on a single FPGA and multiple PUFs on different FP-

GAs.

References

[1] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Delay-

based circuit authentication and applications. In Proceedings

of the 2003 ACM symposium on Applied computing, SAC ’03,

pages 294–301, New York, NY, USA, 2003. ACM.

[2] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls. Physical

unclonable functions and public-key crypto for fpga ip protec-

tion. In Field Programmable Logic and Applications, 2007.

FPL 2007. International Conference on, pages 189 –195, aug.

2007.

[3] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls.

Extended abstract: The butterfly puf protecting ip on every

fpga. In Hardware-Oriented Security and Trust, 2008. HOST

2008. IEEE International Workshop on, pages 67 –70, june

2008.

[4] M. Majzoobi and F. Koushanfar. Time-bounded authenti-

cation of fpgas. Information Forensics and Security, IEEE

Transactions on, 6(3):1123 –1135, sept. 2011.

[5] G. E. Suh and S. Devadas. Physical unclonable functions for

device authentication and secret key generation. In Proceed-

ings of the 44th annual Design Automation Conference, DAC

’07, pages 9–14, New York, NY, USA, 2007. ACM.

5


