
Distortion Analysis

$$X_{IN}(t) = X_m \sin(2\pi f_a t + \theta)$$

lf

$$X_{OUT}(t) = A_0 + \sum_{k=1}^{\infty} A_k \sin\left(2\pi k f_a t + \theta_k\right)$$

Distortion Analysis

Total Harmonic Distortion, THD

 $THD = \frac{\text{total power in all harmonic distortion components}}{\text{signal power or fundamental component power}}$

THD =
$$\frac{A_2^2 + A_3^2 + A_4^2 + A_5^2 + \cdots + A_5}{A_1^2}$$

Signal to noise ratio:

$$SNR = \frac{\text{signal power}}{\text{total power in all non - harmonic frequency bins}}$$

Signal to noise and distortion ratio:

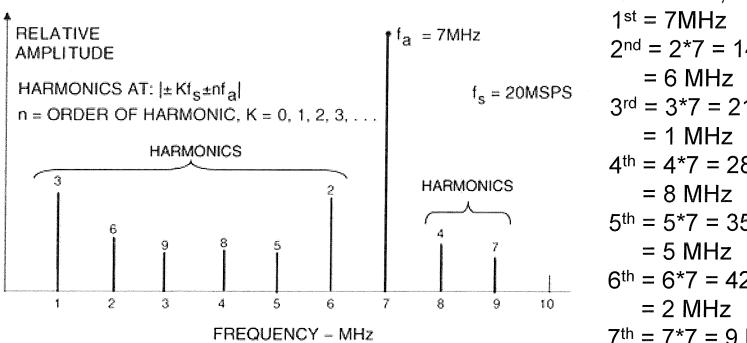
effective of Bits

3

Distortion Analysis

Spurious free dynamic range:

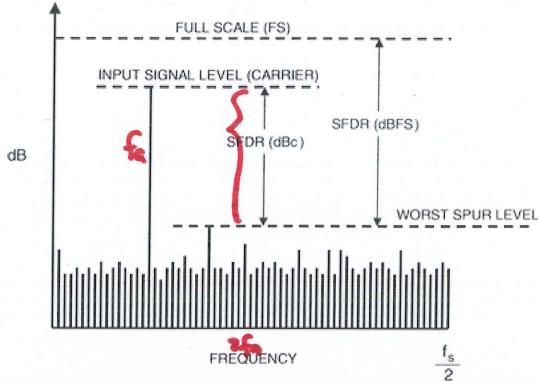
$$SFDR = \frac{\text{signal power}}{\text{largest power in any frequency bin other than signal bin}}$$


In most cases, input signal is near full scale, and the largest spurious component is one of the harmonic distortion components:

$$SFDR = \frac{\text{signal power}}{\text{largest harmonic distortion copmpnent power}}$$

SFDR =
$$\frac{A_1^2}{\max_{k=2}^{2} \{A_k^2\}}$$

In dB, it is equal to the height difference between signal and the largest spur 4

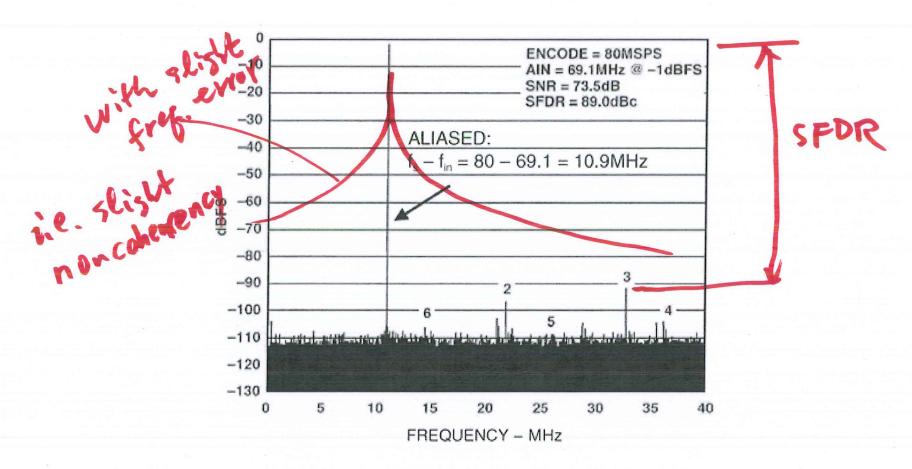

Harmonic distortion

$$fs=20MHz$$
, $fa=7MHz$
 $1^{st}=7MHz$
 $2^{nd}=2^*7=14=20-6$
 $=6MHz$
 $3^{rd}=3^*7=21=21-20$
 $=1MHz$
 $4^{th}=4^*7=28=28-20$
 $=8MHz$
 $5^{th}=5^*7=35=40-35$
 $=5MHz$
 $6^{th}=6^*7=42=42-40$
 $=2MHz$
 $7^{th}=7^*7=9MHz$

- Harmonic distortion is normally specified in dBc (decibels below carrier).
- Generally specified with an input signal near full-scale (generally 0.5 to 1 dB below full-scale to prevent clipping).

Spurious Free Dynamic Range (SFDR)

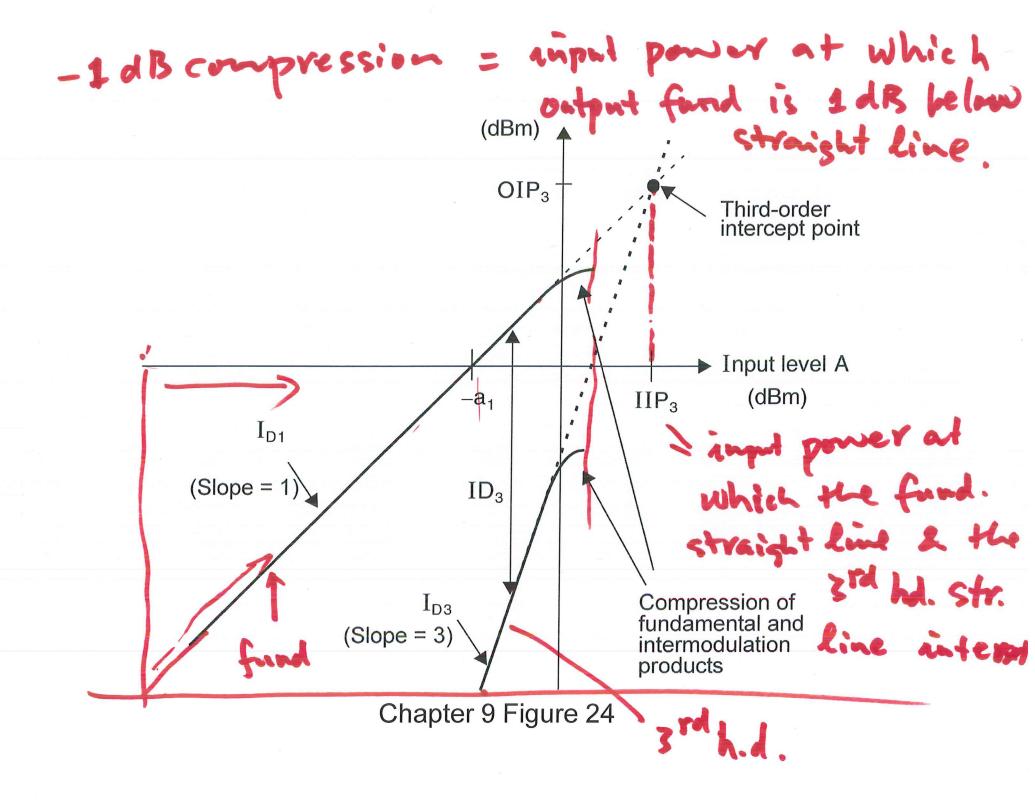
- Probably the most significant specification for a circuit used in a communications application is its spurious free dynamic range (SFDR).
- SFDR is defined as the ratio of the signal power to the largest spurious component power..
- For input signal near full-scale, SFDR is generally determined by the largest harmonics
- For small input signals, other spurs, which are not harmonic to the input signal, may become larger that the harmonic distortion components.
- Therefore, SFDR considers all spurs, regardless harmonic or not.


In order to achieve a clean spectrum, need to main-tain "Coherent Sampling"

C.S. = the data set contain an exact integer # of periods

if J = Jim + AJ

e then. Tint needs to be in 10° 10° range.

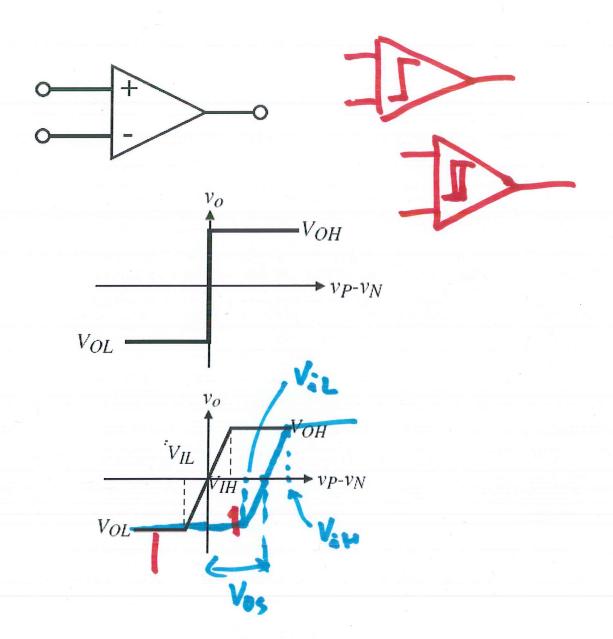

Example SFDR with fs=80 MHz and fa=69.1 MHz

- 14-bit, 80 MSPS wideband ADC designed for communications applications
- single-tone SFDR for a 69.1 MHz input 89 dBc SFDR

Pick M = 2 pick J = odd integer, set sampling freq fs. Compute fa = T * fs keep at least 8 or 9 effective

```
set fs, compute fa
M=4096; %#points in FFT
J=123; %#periods of sine in M points *** fa sin amply
                                      capture M pands at
a = 1\%\log (-3,0,20)*1.5
  x=a*sin(2*pi*J*[0:M-1]'/M); %input pur sine wave
  y=LNA(x); %output of LNA
  vquant = round(y*2^(N-1))/2^(N-1); %quantized y
YFFT = 2*(abs(fft(yquant)/M)).^2;
YFFTdB = 10*log10(2^{(-2*N)}/1000000+YFFT);
Psig = YFFT(J+1); YFFT(J+1)=0;
SFDR = 10*log10(Psig/max(YFFT(2:M/2)))];
HD=0;
for k=2:11, HD=HD+YFFT(J*k+1); YFFT(J*k+1)=0; end
Pnoise = sum(YFFT(2:M/2));
THD = 10*log10(HD/Psig);
SNR = 10*log10(Psig/Pnoise);
```


Comparator


What is a Comparator?

- 2nd most widely used building block after Op Amp
- The comparator is essentially a 1-bit analog to digital converter.
 - Input is analog
 - Output is digital
- Types of comparators:
 - 1. Open-loop (op amps without compensation)
 - 2. Regenerative (use of positive feedback latches)
 - 3. Combination of open-loop and regenerative comparators

Circuit symbol:

Ideal I-O transfer curve

Actual I-O transfer curve

