EE 330 Lecture 26

Thyristors •SCR

TRIAC

Area Comparison between BJT and MOSFET

- BJT Area = $3600 \lambda^2$
- n-channel MOSFET Area = 168 λ^2
- Area Ratio = 21:1

Review from Last Lecture

The Thyristor

A bipolar device in CMOS Processes

Have formed a lateral pnpn device !

Will spend some time studying pnpn devices

Review from Last Lecture The SCR

Silicon Controlled Rectifier

- Widely used to switch large resistive or inductive loads
- Widely used in the power electronics field
- Widely used in consumer electronic to interface between logic and power

Usually made by diffusions in silicon

Consider first how this 4-layer 3-junction device operates

Review from Last Lecture

Variation of Current Gain (β) with Bias for BJT

Note that current gain gets very small at low base current levels

Review from Last Lecture Operation of the SCR

Consider a modified application by adding a load (depicted as R_L)

All operation is as before, but now, after the triggering occurs, the voltage V_F will drop to approximately 0.8 V and the voltage V_{CC} -.8 will appear across R_L

If V_{CC} is very large, the SCR has effectively served as a switch putting V_{CC} across the load and after triggering occurs, I_G can be removed!

But, how can we turn it off? Will discuss that later

Review from Last Lecture Operation of the SCR

The Ideal SCR $I_F = f(V_F, V_G)$

I_H is very small I_{G1} is small (but not too small)

 $I_{F} = f(V_{F}, V_{G})$ called the SCR model

As for MOSFET, Diode, and BJT, several models for SCR can be developed

 $|_{F}$

Operation of the SCR

Operation with the Ideal SCR

Load Line:

$$V_{CC} = I_F R_L + V_F$$

Analysis:

$$V_{CC} = I_F R_L + V_F$$
$$I_{FI} = f(V_F, V_G)$$

The solution of these two equations is at the intersection of the load line and the device characteristics

Note three intersection points Two (upper and lower) are stable equilibrium points, one is not

When operating at upper point, $V_F=0$ so V_{CC} appears across R_L We say SCR is ON

When operating at lower point, I_F approx 0 so no signal across R_L We say SCR is OFF

When $I_G=0$, will stay in whatever state it was in

Operation of the SCR

Operation with the Ideal SCR

Now assume it was initially in the OFF state and then a gate current was applied

$$V_{CC} = I_F R_L + V_F$$
$$I_{FI} = f(V_F, V_G)$$

Now there is a single intersection point so a unique solution

 V_{CC}

IF.

 V_{G}

R

VF

The SCR is now ON

Removing the gate current will return to the previous solution (which has 3 intersection points) but it will remain in the ON state

Reduce V_{CC} so that V_{CC}/R_L goes below I_H

This will provide a single intersection point

 V_{CC} can then be increased again and SCR will stay off

Must not increase V_{CC} much above V_{BGF0} else will turn on

 V_{F}

Operation of the SCR

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

Operation of the SCR

Operation with the Ideal SCR

Often V_{CC} is an AC signal (often 110V)

SCR will turn off whenever AC signal goes negative

This will provide a single intersection point

But when $V_{\text{CC}}\,$ is then increased SCR will again turn on

Not practical to turn it off if I_G is very large

Operation of the SCR

Operation with the actual SCR

Operation of the SCR

Operation with the actual SCR

Still two stable equilibrium points and one unstable point

To turn on, must make I_G large enough to have single intersection point

$$\begin{split} I_{H} & \text{is the holding current} \\ I_{L} & \text{is the latching current (current immediately after turn-on)} \\ V_{BGF0} & \text{is the forward break-over voltage} \\ V_{BRR} & \text{is the reverse break-down voltage} \\ I_{GT} & \text{is the gate trigger current} \\ V_{GT} & \text{is the gate trigger voltage} \end{split}$$

SCR Terminology

Issues and Observations

- Trigger parameters (V_{GT} and I_{GT}) highly temperature dependent
- Want gate "sensitive" but not too sensitive (to avoid undesired triggering)
- SCRs can switch very large currents but power dissipation is large
- Heat sinks widely used to manage power
- Trigger parameters affected by both environment and application
- Trigger parameters generally dependent upon VF
- Exceeding V_{BRR} will usually destroy the device
- Exceeding V_{BGF0} will destroy some devices
- Lack of electronic turn-off unattractive in some applications
- · Can be used in alarm circuits to attain forced reset
- Maximum 50% duty cycle in AC applications is often not attractive

Thyristors

The bad

Parasitic Device that can destroy integrated circuits

Limitations of the SCR

- 1. Only conducts in one direction
- 2. Can't easily turn off (though not major problem in AC switching)

SCR is always off

SCR is ON less than 50% of the time (duty cycle depends upon V_G)

Often use electronic circuit to generate V_{G}

Alarm Application

Bi-directional switching

Use two cross-coupled SCRs

Limitations

Size and cost overhead with this solution Inconvenient triggering since G_1 and G_2 WRT different terminals

Bi-directional switching with the Triac

- Has two cross-coupled SCRs !
- Manufactured by diffusions
- Single Gate Control

· Can define two cross-coupled transistor pairs in each side

Model for Quadrants 1 and 4 (n-diffusion for gate not shown) As for SCR, both circuits have regenerative feedback

Can turn ON in either direction with either positive or negative current

Defines 4 quadrants (in V_{MT21} - V_{G-MT1} plane) for operation

Quadrant 1	V _{G-MT1} >0	$V_{MT2} > V_{MT1}$
Quadrant 2	V _{G-MT1} <0	$V_{MT2} > V_{MT1}$
Quadrant 3	V _{G-MT1} <0	$V_{MT2} < V_{MT1}$
Quadrant 4	V _{G-MT1} >0	$V_{MT2} < V_{MT1}$

Usually use only one $V_G: V_{MT}$ for control

Different voltage, duration strategies exist for triggering

Can't have single $V_G:V_{MT}$ control with two SCRs

The Actual Triac in Basic Circuit

Two stable operating points

The Actual Triac in Basic Circuit

Can turn on for either positive or negative V_{AC} with single gate signal

Phase controlled bidirectional switching with Triacs

Quadrants of Operation Defined in V_{M21} - V_{GT1} plane

(not in the $I_T - V_{M21}$ plane)

But for any specific circuit, can map quadrants from the $V_{\rm M21}\text{-}V_{\rm GT1}$ plane to $I_{\rm T}\text{-}V_{\rm M21}$ plane

Identification of Quadrants of Operation in I_T - V_{M21} plane

Curves may not be symmetric between Q_1 and Q_3 in the I_T - V_{M21} plane

Turn on current may be large and variable in Q_4 (of the $V_{M21}-V_{GT1}$)

Generally avoid operation in Q_4 (of the V_{M21} - V_{GT1} plane)

Most common to operate in Q2-Q3 quadrants or Q1-Q3 quadrants (of the V_{M21}-V_{GT1} plane)

Quadrants of Operation Defined in V_{M21} - V_{GT1} plane

(not in the $I_T - V_{M21}$ plane)

But for any specific circuit, can map quadrants from the $V_{\rm M21}\text{-}V_{\rm GT1}$ plane to $I_{\rm T}\text{-}V_{\rm M21}$ plane

Identification of Quadrants of Operation in I_T - V_{M21} plane

Curves may not be symmetric between Q_1 and Q_3 in the I_T - V_{M21} plane

Turn on current may be large and variable in Q_4 (of the $V_{M21}-V_{GT1}$)

Generally avoid operation in Q_4 (of the V_{M21} - V_{GT1} plane)

Most common to operate in Q2-Q3 quadrants or Q1-Q3 quadrants (of the V_{M21}-V_{GT1} plane)

(V_{GG} often from logic/control circuit)

Quad 1 : Quad 4

(not attractive because of Quad 4)

(V_{GG} often from logic/control circuit)

Quad 2 : Quad 3

Some Basic Triac Application Circuits

V_{M21}

Quad 2 : Quad 3

Limitations?

If V_{AC} is the standard 120VAC line voltage, where do we get the dc power supply?

Direct digital control of trigger voltage/current with dedicated IC

♦ V_{M21}

Some Basic Triac Application Circuits

Quad 1/ Quad 2 : Quad 3/Quad 4

Not real popular

End of Lecture 26