EE 435 Lecture 44

Switched-Capacitor Amplifiers Other Integrated Filters

- \bullet Accurate control of gain is possible (0.1% or better) but extreme care to detail in layout and statistical analysis for adequate area allocation is necessary
- •Stray-insensitive structures

Bottom-plate sampling with advanced clock reduces signal-dependent gain errors when V_{IN} is time varying: Sample and Hold

Summing Inverting and Noninverting Amplifier

$$
V_{OUT} = \frac{C_1}{C}V_{IN1} - \frac{C_2}{C}V_{IN2}
$$

(modification for bottom-plate sampling needed if V_{IN} is time varying: track and hold)

Flip-Around Amplifier

(modification for bottom-plate sampling needed if V_{IN} is time varying: track and hold)

$$
V_{OUT} = V_{INI} \left(1 + \frac{C_1}{C_2} \right) - V_{IN2} \left(\frac{C_1}{C_2} \right)
$$

Flip-Around Subtracting Amplifier

(modification for bottom-plate sampling needed if V_{IN} is time varying: track and hold)

Consider the following circuit

Consider the following circuit

During phase Φ₁

 Q_{C1} =C₁V_{IN}

Consider the following circuit

from $\Phi_{\scriptscriptstyle{1}}$ Q_{C1} =C₁V_{IN}

during $\mathsf{\Phi_2} \quad \mathsf{Q}_{\mathsf{C}1}\mathsf{=}0 \quad \mathsf{Q}_{\mathsf{C}2}\mathsf{=} \mathsf{C}_1 \mathsf{V}_{\mathsf{IN}}$

Consider the following circuit

from $\Phi^{}_2$ $\mathsf{Q}_{\mathsf{C}1}$ =0 $\mathsf{Q}_{\mathsf{C}2}$ =C₁V_{IN}

 $\mathsf{Q}_{\mathsf{C}1}$ =C $_1$ V_{IN} ${\sf during}\ \Phi_2$ Q_{C1}=C₁V_{IN} Q_{C2}=C₁V_{IN}

Consider the following circuit

during $\mathsf{\Phi_2} \qquad \mathsf{Q}_{\mathsf{C2}}$ =0 $\qquad \quad \mathsf{Q}_{\mathsf{C1}}$ =2C₁V_{IN}

Thus $V_{\text{OUT}}=Q_{C1}/C_1=2V_{\text{IN}}$

Consider the following circuit

Gain of 2 obtained without requiring any matching of components

Top-Plate vs Bottom-Plate Sampling

Top-Plate Sampling Top-Plate Sampling

Top-Plate vs Bottom-Plate Sampling

- Actual sample taken at t_A
- Sampled-value is signal-level dependent
- Equivalent to a signal-dependent jitter on sampling clock
- Causes serious nonlinear distortion if signal frequency is high

- Actual sample taken at t_A
- $\mathsf{t}_{\mathsf{A}}\mathsf{-t}_{\mathsf{D}}$ is independent of $\mathsf{V}_{\mathsf{IN}}(\mathsf{t})$
- Dramatic reduction in nonlinear distortion and signal-dependent sampling error
- Effectively causes a constant phase shift in sampling time

Expanded time axis:

 ${\sf Further~expanded~time~axis}$ (V $_{\sf IN}$ change exaggerated to show effects):

 C_T and C_B are parasitic capacitances that appear at nodes connected to top plate and bottom plate of C

- Actual sample taken at t_A
- $\mathsf{t}_{\mathsf{A}}\mathsf{-t}_{\mathsf{D}}$ is independent of $\mathsf{V}_{\mathsf{IN}}(\mathsf{t})$
- \bullet Some change in $\mathsf{V}_{\mathsf{OUT}}$ will occur until $\mathsf{\Phi}_1$ opens
- $\bullet\,$ Time $\Phi_{\scriptscriptstyle 1}$ opens is input signal-level dependent

- \bullet Gain error on sampling V_{IN} at t_A
- Dependent upon $\mathsf{V}_{\mathsf{IN}}(\mathsf{t}_\mathsf{T})$ which causes distortion in sample
- $\cdot \;\; {\rm C}_{\text{\tiny B}}$ can be a reasonable percentage of C

 $V_{C_1}(t_T) = V_{IN}(t_A) \left[\frac{C_1}{C_1 + C_B} \right] + \left(\frac{C_B}{C_1 + C_B} \right) V_{IN}(t_T)$ $\left[\frac{C_1}{C_1+C_B}\right]^+ \left(\frac{C_B}{C_1+C_B}\right)$

Likewise:

$$
V_{C_B}(t_T) = \left(\frac{C_1}{C_1 + C_B}\right) V_{IN}(t_T) - \left(\frac{C_1}{C_1 + C_B}\right) V_{IN}(t_A)
$$

Thus charges stored on C_1 and C_B at t_T are

$$
Q_{C_1}(t_T) = C_1 V_{IN}(t_A) \left[\frac{C_1}{C_1 + C_B} \right] + C_1 \left(\frac{C_B}{C_1 + C_B} \right) V_{IN}(t_T)
$$

$$
Q_{C_B}(t_T) = C_B \left(\frac{C_1}{C_1 + C_B} \right) V_{IN}(t_T) - C_B \left(\frac{C_1}{C_1 + C_B} \right) V_{IN}(t_A)
$$

$$
Q_{C_1}(t_T) = C_1 V_{IN}(t_A) \left[\frac{C_1}{C_1 + C_B} \right] + C_1 \left(\frac{C_B}{C_1 + C_B} \right) V_{IN}(t_T)
$$

$$
Q_{C_B}(t_T) = C_B \left(\frac{C_1}{C_1 + C_B} \right) V_{IN}(t_T) - C_B \left(\frac{C_1}{C_1 + C_B} \right) V_{IN}(t_A)
$$

During Φ_2 , these capacitors are both discharged and the charge on feedback capacitor C becomes

$$
Q_C = Q_{C_1} - Q_{C_B}
$$

it thus follows that

$$
Q_C(t_T) = C_1 V_{IN}(t_A)
$$

- Extra charge accumulated on ${\sf C}_1$ until the top switch opened equal to charge accumulated on ${\sf C}_{\sf B}$
- For switching scheme used here, effects precisely cancel when charge is transferred to C

$$
V_{OUT}(t_T) = \frac{Q_C(t_T)}{C} = \frac{C_1}{C}V_{IN}(t_A)
$$

As predicted the output voltage is not a function of \mathfrak{t}_τ and thus the parasitic capacitance on the bottom Plate does not affect performance when bottom plate sampling is used

Switch impedance issues

- When in track mode, non-zero R_{SW} causes small amplitude decrease and phase shift but no nonlinear distortion provided R_SW is not signal-level dependent
- Top-plate switch (R_SW or R_SWT) is signal level dependent if implemented with simple transistor
- Bottom-plate switch (${\sf R}_{\text{SWB}}$) is not signal-level dependent
- Make R_{SW} and $\mathsf{R}_{\mathsf{SWT}}$ sufficiently small to avoid distortion

Switch impedance issues

When transitioning from track mode to hold mode, swtich impedance increases rapidly from non-zero R_{SW}

Amplitude and phase shift for bottom-plate sampler (difficult to distinguish between phase and amplitude effects in this zoom)

Switch impedance issues

Switch impedance issues

- Track/Hold Transition usually not of concern if fast fall time on switch
- Switch impedance effects can be managed by making R_{SW} small
- Bottom-plate sampling does not introduce distortion