EE 435 Lecture 44

Switched-Capacitor Amplifiers Other Integrated Filters

- Accurate control of gain is possible (0.1% or better) but extreme care to detail in layout and statistical analysis for adequate area allocation is necessary
- Stray-insensitive structures

Bottom-plate sampling with advanced clock reduces signal-dependent gain errors when V_{IN} is time varying: Sample and Hold

Summing Inverting and Noninverting Amplifier

$$V_{OUT} = \frac{C_1}{C} V_{IN1} - \frac{C_2}{C} V_{IN2}$$

(modification for bottom-plate sampling needed if V_{IN} is time varying: track and hold)

Flip-Around Amplifier

(modification for bottom-plate sampling needed if $V_{\mbox{\scriptsize IN}}$ is time varying: track and hold)

$$V_{OUT} = V_{IN1} \left(1 + \frac{C_1}{C_2} \right) - V_{IN2} \left(\frac{C_1}{C_2} \right)$$

Flip-Around Subtracting Amplifier

(modification for bottom-plate sampling needed if V_{IN} is time varying: track and hold)

Consider the following circuit

Consider the following circuit

During phase Φ_1

 $Q_{C1}=C_1V_{IN}$

Consider the following circuit

from Φ_1 Q_{C1}=C₁V_{IN}

during Φ_2 Q_{C1}=0 Q_{C2}=C₁V_{IN}

Consider the following circuit

from Φ_2 Q_{C1}=0 Q_{C2}=C₁V_{IN}

during Φ_2 Q_{C1}=C₁V_{IN} Q_{C2}=C₁V_{IN}

Consider the following circuit

during Φ_2 Q_{C2}=0 Q_{C1}=2C₁V_{IN}

Thus $V_{OUT}=Q_{C1}/C_1=2V_{IN}$

Consider the following circuit

Gain of 2 obtained without requiring any matching of components

Top-Plate vs Bottom-Plate Sampling

Top-Plate Sampling

Bottom-Plate Sampling

Top-Plate vs Bottom-Plate Sampling

- Actual sample taken at t_A
- Sampled-value is signal-level dependent
- Equivalent to a signal-dependent jitter on sampling clock
- Causes serious nonlinear distortion if signal frequency is high

- Actual sample taken at t_A
- + t_A - t_D is independent of $V_{IN}(t)$
- Dramatic reduction in nonlinear distortion and signal-dependent sampling error
- Effectively causes a constant phase shift in sampling time

Expanded time axis:

Further expanded time axis (V_{IN} change exaggerated to show effects):

 $C_{\rm T}$ and $C_{\rm B}$ are parasitic capacitances that appear at nodes connected to top plate and bottom plate of C

- Actual sample taken at t_A
- t_A - t_D is independent of $V_{IN}(t)$
- Some change in V_{OUT} will occur until Φ_1 opens
- Time Φ_1 opens is input signal-level dependent

- Gain error on sampling V_{IN} at t_A
- Dependent upon $V_{IN}(t_T)$ which causes distortion in sample
- C_B can be a reasonable percentage of C

Consider the entire SC amplifier

$$V_{C_{B}}(t_{T}) = \left(\frac{C_{1}}{C_{1}+C_{B}}\right)V_{IN}(t_{T}) - \left(\frac{C_{1}}{C_{1}+C_{B}}\right)V_{IN}(t_{A})$$

Thus charges stored on C_{1} and C_{B} at t_{T} are

$$Q_{C_{1}}(t_{T}) = C_{1}V_{IN}(t_{A}) \left[\frac{C_{1}}{C_{1}+C_{B}}\right] + C_{1} \left(\frac{C_{B}}{C_{1}+C_{B}}\right) V_{IN}(t_{T})$$
$$Q_{C_{B}}(t_{T}) = C_{B} \left(\frac{C_{1}}{C_{1}+C_{B}}\right) V_{IN}(t_{T}) - C_{B} \left(\frac{C_{1}}{C_{1}+C_{B}}\right) V_{IN}(t_{A})$$

$$Q_{C_{1}}(t_{T}) = C_{1}V_{IN}(t_{A}) \left[\frac{C_{1}}{C_{1}+C_{B}} \right] + C_{1} \left(\frac{C_{B}}{C_{1}+C_{B}} \right) V_{IN}(t_{T})$$
$$Q_{C_{B}}(t_{T}) = C_{B} \left(\frac{C_{1}}{C_{1}+C_{B}} \right) V_{IN}(t_{T}) - C_{B} \left(\frac{C_{1}}{C_{1}+C_{B}} \right) V_{IN}(t_{A})$$

During Φ_2 , these capacitors are both discharged and the charge on feedback capacitor C becomes

$$Q_{C} = Q_{C_{1}} - Q_{C_{E}}$$

it thus follows that

$$Q_{C}(t_{T}) = C_{1}V_{IN}(t_{A})$$

- Extra charge accumulated on C₁ until the top switch opened equal to charge accumulated on C_B
- For switching scheme used here, effects precisely cancel when charge is transferred to C

$$V_{OUT}(t_T) = \frac{Q_C(t_T)}{C} = \frac{C_1}{C} V_{IN}(t_A)$$

As predicted the output voltage is not a function of t_T and thus the parasitic capacitance on the bottom Plate does not affect performance when bottom plate sampling is used

Switch impedance issues

- When in track mode, non-zero R_{SW} causes small amplitude decrease and phase shift but no nonlinear distortion provided R_{SW} is not signal-level dependent
- Top-plate switch ($\rm R_{SW}$ or $\rm R_{SWT}$) is signal level dependent if implemented with simple transistor
- Bottom-plate switch (R_{SWB}) is not signal-level dependent
- Make R_{sw} and R_{swT} sufficiently small to avoid distortion

Switch impedance issues

When transitioning from track mode to hold mode, swtich impedance increases rapidly from non-zero $\rm R_{SW}$

Amplitude and phase shift for bottom-plate sampler (difficult to distinguish between phase and amplitude effects in this zoom)

Switch impedance issues

Switch impedance issues

- Track/Hold Transition usually not of concern if fast fall time on switch
- Switch impedance effects can be managed by making R_{SW} small
- Bottom-plate sampling does not introduce distortion