
1

1

Lecture 11 Memory Data Flow 
Techniques

CprE 581 Computer Systems
Architecture

Readings
Readings

Textbook pages 164-165

Reference “Modern Processor Design” Sec. 5.3, (3) 

The Alpha 21264 Processor, IEEE Micro, No. 2, 
1999

2

3

Load/Store Execution Steps
Load: LW R2, 0(R1)
1. Generate virtual 

address; may wait 
on base register

2. Translate virtual 
address into 
physical address

3. Read data cache

Store: SW R2, 0(R1)
1. Generate virtual 

address; may wait 
on base register 
and data register

2. Translate virtual 
address into 
physical address

3. Write data cache

4

Memory Data Flow
Unlike in register indices, memory addresses 

are not known until the end of execution

DIV.D F10, F12, F14
SW F10, 100(R8)
LW F16, 200(R10)
ADD F16, F16, F18

When should LW be executed?

Dependent or not?



2

5

Memory-level Parallelism
for (i=0;i<100;i++)
A[i] = A[i]*2;

Loop:L.S F2, 0(R1)
MULT F2, F2, F4
SW F2, 0(R1)
ADD R1, R1, 4
BNE R1, R3,Loop

Note: F4 contains value 2

LW1

SW1

LW2

SW2

LW3

SW3
Significant performance 

gain if they can be 
executed in parallel

But what happens if there 
is a dependency?

6

Memory Dependences
Memory contents must be the same as in 

sequential execution
Hardware must handle data and name 

dependences correctly

Key differences with register dependences
1. Dependences are not known until memory 

addresses are calculated
2. Both data and name dependences are 

generally rare cases within a small 
instruction window

7

Memory Store: Correctness and 
Performance Considerations

Memory stores should proceed to 
memory in program order
 Only non-speculative store instructions 

may write to memory
 WAR and WAW dependences are not 

concerns

8

Memory Store: Correctness and 
Performance Considerations

Writes should be buffered to avoid 
memory bottleneck 
 Cache memory has limited access ports
 Non-memory instructions won’t wait for 

memory stores
 Memory dependences are ,in general, 

rare
 Memory loads are performance critical –

they should have higher priority in 
memory access



3

9

Correctness and Performance 
Regarding Memory Loads

Memory loads are performance-critical
1. Reads may proceed to memory out-of-order
2. A read may bypass earlier writes if their 

addresses are different
3. A read may receive data forwarded from 

buffered writes if their address are identical

On the other hand, a speculative load with 
wrong data can be tolerated in Tomasulo
scheduling.

10

Load/store Buffer in Tomasulo
Support memory-level 

parallelism

Loads wait in load buffer 
until their address is 
ready; memory reads 
are then processed

Stores wait in store 
buffer until their 
address and data are 
ready; memory writes 
wait further until 
stores are committed

Reorder
BufferDecode

FU1 FU2

RS RS

Fetch Unit

Rename

L-bufS-buf

DM

Regfile

IM

11

Load/store Unit with Centralized RS

Centralized RS 
includes part of 
load/store buffer in 
Tomasulo

Loads and stores wait 
in RS until they are 
ready

Reorder
BufferDecode

FU1 FU2

Fetch Unit

Rename

S-unit

Regfile

IM

RS

cache

L-unit

data addr

addr
Store buffer

12

Store Stages in Dynamic Execution
1. Wait in RS until base 

address and store data 
are available (ready)

2. Move to store unit for 
address calculation and 
address translation

3. Move to store buffer 
(finished)

4. Wait for ROB commit 
(completed/committed)

5. Write to data cache 
Stores always retire in 
for WAW and WRA Dep.

This is a combination of 
store buffer/queue and 
write buffer

Source: Shen and Lipasti, page 197

finished

completed

D-cache

RS

Store
unit

Load
unit



4

13

Load Bypassing and Memory Disambiguation

To exploit memory parallelism, loads may 
run ahead of earlier writes; but this 
may violate RAW dependences

Dynamic Memory Disambiguation 
(Memory Alias Analysis): Dynamic 
detection of memory dependences
Compare load address with every older 
store address

14

Load Bypassing

1
2

D-cache

RS

Store
unit

1
2

Load
unit

3

1. address calc.
2. address trans.
3. if no match, update
dest reg

Associative search for
matching

match

addrdata

data

addr Assume in-order execution
of load/stores

in-order load/store

15

Load Forwarding
Load Forwarding: if a load 

address matches an 
older write address, 
can forward data

If a match is found, 
forward the related 
data to dest register 
(in ROB)

Multiple matches may 
exist; last one wins

1
2

D-cache

Store
unit

1
2

Load
unit

3match

addrdata

data

addr

To dest.
reg

RS
in-order

16

In-order Issue Limitation

Now a load doesn’t 
have to wait for stores 
to be committed and 
written to cache

However, loads and 
stores are serialized 
at inst scheduling.

for (i=0;i<100;i++)
A[i] = A[i]/2;

Loop:L.S F2, 0(R1)
DIV F2, F2, F4
SW F2, 0(R1)
ADD R1, R1, 4
BNE R1, R3,Loop



5

17

Speculative Load Execution

1
2

D-cache

RS

Store
unit

1
2

Load
unit

3match

addr
data

data

out-order

addr
Finished
load buffer

Match 
at completion

If match: flush pipeline

Forwarding does 
not always work if 
some addresses 
are unknown

No match: 
predict a load has 
no RAW on older 
stores 

Flush pipeline at 
commit if 
predicted wrong

18

Alpha 21264 Pipeline

19

Alpha 21264 Load/Store Queues

Addr
ALU

Int
ALU

Int
ALU

Addr
ALU

Int issue queue fp issue queue

FP
ALU

FP
ALU

Int RF(80) Int RF(80) FP RF(72)

D-TLB L-Q S-Q AF

Dual D-Cache

32-entry load queue, 32-entry store queue
20

Load Bypassing, Forwarding, and RAW Detection
commit

match

D-cacheD-cache

If match (and if the load was executed out-of-order): 
mark store-load trap to flush pipeline (at commit)

If match: 
forwarding

EXE EXE completed

Load/store?ROB
Load: WAIT if 
LQ head not 
completed, then 
move LQ head
Store: mark SQ 
head as 
completed, then 
move SQ head

LQ SQ



6

21

Speculative Memory Disambiguation

1024 1-bit
entry table

Fetch PC

Renamed inst

int issue queue

1

• When a load is trapped at commit, set stWait bit in the 
table, indexed by the load’s PC
• When the load is fetched, get its stWait from the 
table
• The load waits in issue queue until old stores are issued
• stWait table is cleared periodically

Load forwarding

22

Architectural Memory States

Memory request: search the hierarchy from top to 
bottom

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

L3-Cache (optional)

Completed 
entries

LQ
SQ Committed 

states

23

Summary of Superscalar Execution
Instruction flow techniques
Branch prediction, branch target prediction, and 

instruction prefetch

Register data flow techniques
Register renaming, instruction scheduling, in-order 

commit, mis-prediction recovery

Memory data flow techniques
Load/store units, memory consistency

Source: Shen & Lipasti


