
APRES: Improving Cache Efficiency by Exploiting Load Characteristics on GPUs

Yunho Oh∗, Keunsoo Kim∗, Myung Kuk Yoon∗, Jong Hyun Park∗, Yongjun Park†,
Won Woo Ro∗, and Murali Annavaram‡

∗ Yonsei University
{yunho.oh, keunsoo.kim, myungkuk.yoon, park.jonghyun, wro}@yonsei.ac.kr

† Hongik University
yongjun.park@hongik.ac.kr

‡ University of Southern California
annavara@usc.edu

Abstract—Long memory latency and limited throughput
become performance bottlenecks of GPGPU applications. The
latency takes hundreds of cycles which is difficult to be hidden
by simply interleaving tens of warp execution. While cache
hierarchy helps to reduce memory system pressure, massive
Thread-Level Parallelism (TLP) often causes excessive cache
contention. This paper proposes Adaptive PREfetching and
Scheduling (APRES) to improve GPU cache efficiency. APRES
relies on the following observations. First, certain static load
instructions tend to generate memory addresses having very
high locality. Second, although loads have no locality, the access
addresses still can show highly strided access pattern. Third,
the locality behavior tends to be consistent regardless of warp
ID.

APRES schedules warps so that as many cache hits gener-
ated as possible before any cache misses generated. This is to
minimize cache thrashing when many warps are contending for
a cache line. However, to realize this operation, it is required
to predict which warp will hit the cache in the near future.
Without directly predicting future cache hit/miss for each warp,
APRES creates a group of warps that will execute the same load
instruction in the near future. Based on the third observation,
we expect the locality behavior is consistent over all warps
in the group. If the first executed warp in the group hits the
cache, then the load is considered as a high locality type, and
APRES prioritizes all warps in the group. Group prioritization
leads to consecutive cache hits, because the grouped warps
are likely to access the same cache line. If the first warp
missed the cache, then the load is considered as a strided
type, and APRES generates prefetch requests for the other
warps in the group. After that, APRES prioritizes prefetch
targeted warps so that the demand requests are merged to
Miss Status Holding Register (MSHR) or prefetched lines
can be accessed. On memory-intensive applications, APRES
achieves 31.7% performance improvement compared to the
baseline GPU and 7.2% additional speedup compared to the
best combination of existing warp scheduling and prefetching
methods.
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I. INTRODUCTION

Modern Graphics Processing Units (GPUs) exploit
Thread-Level Parallelism (TLP) to achieve high throughput.
However, the performance of GPUs is often limited by
memory system performance [1], [2], [3], [4], [5], [6]. In
particular, the long off-chip memory access latency is a key
limiter. The minimum access latency to off-chip DRAM
takes hundreds of cycles. Even though GPUs support wide

memory access width to support accesses from multiple
threads, the per thread bandwidth is still a performance bot-
tleneck. It has been shown that limited memory bandwidth
often adds long queuing delay [1], [7]. While GPUs try to
hide some of access latency by interleaving warp execution,
the long off-chip memory delays are still exposed and the
pipeline is stalled waiting for response from the memory
system.

Significant efforts have been made for hiding effective
access latency by improving cache efficiency [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]. These techniques in-
crease cache hits by throttling the number of active threads to
reduce cache contention [14], or improving thread schedul-
ing to maximize cache hits [15]. While these techniques
are effective, the L1 cache hit rates are still very low even
with these approaches due to the small L1 cache size. For
instance, a typical size of GPU L1 cache is in the range
of 16-48 KB per Streaming Multiprocessor (SM), which
is one core within a GPU. However, the number of active
threads per SM is in the range of 1024-2048. As a result,
each thread, on average, has access to only 8-48 bytes of
L1 cache [18]. This capacity is insufficient and often causes
cache thrashing [19]. In our simulation studies (details later),
capacity and conflict misses account for 42.7% of total
misses.

Since GPU applications often show regular and pre-
dictable data access pattern, data prefetching techniques on
GPUs have been proposed [20], [21] to reduce effective
memory latency. However, when the per thread cache size
is so severely restricted as in GPUs, prefetching has to
achieve extremely high accuracy and near-perfect timeli-
ness. Otherwise prefetched lines may evict useful data, or
prefetched lines themselves may be evicted before they are
used. These evictions increase memory traffic and queuing
delay, resulting in unintended negative consequences.

This paper tackles the above challenges by exploiting
two important observations that were made through detailed
per load instruction characterization across a range of GPU
benchmarks. Load instructions can be divided into the fol-
lowing two types. The first type of loads access only a small
range of memory space, thus exhibit strong locality. An
extreme case example is when a load is used for accessing
a variable shared across all warps that load always accesses
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the same address. The second type of loads have a large
memory footprint and their data is never reused after the
first access, however addresses from these loads still exhibit
strong striding pattern. These loads are often used to access a
large array indexed by thread ID, which is a common pattern
observed in many GPU applications. The characteristics are
unique to each static load regardless of warp IDs.

Using the above observation, this paper proposes a
technique to improve cache efficiency, namely Adaptive
PREfetching and Scheduling (APRES). Since each static load
is either striding or has high locality independent of the
warp, APRES first groups warps that are predicted to execute
the same load instruction in the near future. Once any warp
in the group hits in the cache, APRES considers that load
to exhibit high locality and predicts all other warps in the
group will also hit the cache. As such, APRES prioritizes all
warps of that group as they are predicted to hit in the cache.
On the contrary, if a warp load misses in the cache, APRES
characterizes that load as a stride type. APRES then issues
prefetch requests targeted for all other warps that belong
to that group. Given these warps exhibit stride behavior,
it is possible to predict future demand requests generated
from other warps based on the memory accesses executed
by the current warp. Once the prefetch requests are issued,
APRES prioritizes warps in the group to quickly use the
prefetched data. This prioritization minimizes the possibility
of early eviction of the prefetched lines. If the warps targeted
for prefetch issue the load before the prefetched data is
delivered, the demand requests are merged in miss status
handling registers (MSHRs) of the L1 cache.

Detailed simulation results show that APRES outperforms
the baseline GPU by 31.7% and it outperforms the best
combination of existing warp scheduling and prefetching
techniques by 7.2% on memory-intensive applications. In
addition, APRES reduces the energy consumption by 10.8%
compared to the baseline GPU.

The main contributions of this paper are as follows.

• We provide a detailed cache access characterization of
static loads in GPU applications. We categorize the
load instructions as either striding or exhibiting strong
locality. We observe that static loads exhibit the same
behavior across different warps in the same kernel.

• We propose APRES, a technique that improves cache
efficiency by combining warp scheduling and prefetch-
ing. APRES groups and prioritizes a group of warps
according to load instruction characteristics. Group-
based scheduling improves cache efficiency by reducing
cache contention and minimizing early evictions of
prefetched cache lines.

The rest of the paper is organized as follows. Section
II introduces the baseline GPU architecture. Section III
describes the challenges associated with warp scheduling
and prefetching. Section IV discusses the details of the
APRES architecture. The experimental results are shown in
Section V. Section VI explains the related work and we
conclude in Section VII.

Figure 1. Baseline GPU architecture

II. BASELINE ARCHITECTURE

Figure 1 depicts the baseline GPU architecture used in
this paper, which is based on NVIDIA’s publicly disclosed
architecture specifications. A GPU contains hundreds or
thousands of cores. They are arranged in a hierarchical
structure. A single GPU consists of multiple Streaming
Multiprocessors (SMs). Each SM has dozens of cores (in
NVIDIA GPU model, they are called CUDA1 cores) which
are in charge of arithmetic operations. In case of the
Maxwell architecture, an SM contains 128 CUDA cores
[22]. The GPU performs massive parallel processing based
on the Single Instruction Multiple Thread (SIMT) execution
model [23]. To efficiently execute threads on GPUs, they are
scheduled based on an unique unit of thread group, called a
warp. Each warp consists of 32 threads in case of NVIDIA
GPUs. All threads in a warp execute the same instruction
concurrently. Each SM stores the architecture state of dozens
of warps, and the warp scheduler in an SM find the available
warps from this pool of warps to be issued for execution
every cycle. The basic warp scheduling scheme is Loose
Round-Robin (LRR) policy. The warp scheduler with LRR
policy provides equal scheduling priorities to all ready warps
and finds an issuable warp in sequential order of warp IDs.

GPUs have a hierarchical memory system. Each SM has
register file, shared memory, and L1 cache. Register file
stores per-thread data generated from computations. Shared
memory is used as a scratchpad space and can be configured
by programmer. L1 data cache is transparent to the GPU
device memory (also called global memory) [24]. L1 texture
and constant cache stores read only data. Texture cache
is useful in graphics processing. In the lower level, the
last-level cache is shared by all SMs. Last-level cache is
partitioned and each LLC partition is dedicated to each
DRAM partition. Outside of the GPUs, the off-chip device
memory is located as the lowest level of memory hierarchy.

To support massive memory operations efficiently, GPUs
provide memory request coalescing. The memory requests
are coalesced if threads in a warp access consecutive ad-
dresses in the device memory. In that case, the memory
requests are unified, so that the traffics can be dramatically
reduced [23].

1CUDA is the abbreviation of Compute Unified Device Architecture.

192192



L1
 D

ca
ch

e 
M

is
s 

R
at

io

Memory-intensive Compute-intensive

Figure 2. Breakdown of total L1 data cache miss ratio, capacity and
conflict miss ratio of Baseline 32KB (B) and large 32MB Capacity of
L1 data cache (C) (Number in parentheses: Relative performance of C
normalized to B)

III. UNDERSTANDING GPU CACHE MISSES

A. Impact of Memory System on Performance

L1 data cache on GPUs often suffers from high miss rate
due to its small size. We measured the fraction of capacity,
conflict, and cold misses for 15 applications. The detailed
methodology is presented in Section V. We grouped capacity
and conflict misses together because both misses happen due
to limited cache size. A cache access request is considered
either a capacity or a conflict miss if the line has been
loaded to cache previously but evicted prior to first reuse.
The Y axis of Figure 2 indicates L1 cache miss rate and
each stacked bar indicates the portion of cold and capac-
ity+conflict miss. We categorize the applications broadly into
compute and memory-intensive according to their speedup
sensitivity in memory system performance, such as the
impact of increasing cache size or memory bandwidth.
Although the miss rate of compute-intensive applications
(87.6%) is higher than memory-intensive (67.1%), when
the miss rate is reduced the benefit will be much more in
memory-intensive applications. Capacity and conflict misses
are the dominating misses in memory-intensive applications,
which account for 62.8% of the miss rate.

As capacity or conflict misses account for significant
portion of total cache misses, a larger cache size will
improve performance. We will use a hypothetical GPU
model for analyzing performance impact of memory system.
The model uses a very large L1 cache of 32 MB. As
shown in Figure 2, the large cache cuts the capacity and
conflict misses into half in BFS, SPMV, and KM, compared
to the baseline. The number in the parenthesis below the
benchmark label on the X-axis shows the performance
improvement (reduction in execution time) with the larger
cache compared to the baseline. Based on these results, we
find that reducing the capacity and conflict misses would
result in significant performance improvements.

B. Characterizing Load Instructions of GPU Applications

In this section we characterize the cache access behavior
of individual static loads in each of the GPU applications.
Table I shows the list of top three frequently executed static
load instructions for each application. For this study, we
considered only the most memory-intensive kernel of each
application. We measure the number of memory references

Table I
CHARACTERISTICS OF FREQUENTLY EXECUTED LOADS

App PC %Load #L/#R Miss Rate Stride %Stride
0x110 51.6% 0.04 0.78 0 16.3%

BFS 0xF0 26.4% 0.12 0.90 0 13.3%
0x198 9.5% 0.11 0.83 0 14.7%

0x7A8 66.2% 0.01 0.17 0 36.3%
MUM 0x460 21.3% 0.04 0.04 0 46.8%

0x8A0 12.3% 0.07 0.17 0 34.3%

0x490 18.9% 0.98 1.0 -1966080 56.0%
NW 0xD18 18.8% 0.97 1.0 -1966080 74.5%

0x108 1.8% 0.94 1.0 -1966080 60.8%

0x1E0 51.5% 0.13 0.32 0 24.0%
SPMV 0x200 23.8% 0.25 0.25 0 19.3%

0xE0 7.2% 0.65 0.81 0 12.5%

KM 0xE8 100.0% 0.03 0.99 4352 78.2%

0x20F0 30.2% 0.58 0.96 2048 66.6%
LUD 0x2080 30.2% 0.57 0.91 2048 83.3%

0x22E0 30.1% 0.66 0.97 2048 77.3%

0x250 31.2% 0.99 0.99 16384 78.2%
SRAD 0x230 31.2% 0.99 1.0 16384 75.0%

0x350 31.2% 0.52 0.99 16384 80.7%

0x2210 51.7% 0.03 0.98 8832 42.7%
PA 0x2230 39.9% 0.002 0.16 0 36.2%

0x2088 3.2% 0.02 0.02 256 91.5%

HISTO 0x168 100.0% 1 1.0 512 20.8%

0x3F8 19.4% 0.59 1.0 128 75.5%
BP 0x408 19.4% 0.59 1.0 128 64.1%

0x478 19.4% 0.59 0.03 128 67.1%

%Load: Portion of each load among total load executions
#L/#R: # of unique cache lines per reference, Miss Rate: L1 data cache miss rate

Stride: Stride in bytes, %Stride: Portion of stride among total stride detected

generated after coalescing multiple thread requests from a
single warp as much as possible.

The column %Load indicates the fraction of memory
requests generated by each static load over the total number
of memory requests. #L/#R indicates the ratio between the
number of unique cache lines and the number of cache
references generated by the static load. With this metric,
we can estimate how much memory locality exists between
warps executing the same static load. If data referenced by a
warp is re-referenced by the same warp or another warp [14]
then #L/#R value will be small. Hence, in principle the load
should have very high cache hit ratio.

We compare the #L/#R value with the actual cache miss
rate suffered by that particular load instruction. As cache
contention increases, the gap between #L/#R and miss rate
increases. An extreme case is observed in the KM applica-
tion. In KM, 100% of memory request are generated from
only one static load. That load has #L/#R=0.03, indicating
that the miss rate of 0.03 can be achieved with infinite cache
size. However, the actual cache miss rate is almost 99%.
Such a large gap between #L/#R and miss rate implies that
severe cache thrashing made L1 cache virtually useless. In
fact, we observed that the working set size of KM is about 2
MB per SM, which is more than 60× the size of L1 cache,
which is 32 KB.

A simple solution is using a large L1 cache at the cost
of higher storage and design overheads. As shown in Figure
2, using cache as large as 32 MB improves L1 cache hit
rate significantly and hence the highest speedup of 3.4 is
observed for KM. Clearly, such a large cache design is im-
practical using current design technologies. Another solution
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Figure 3. Relative performance comparison of prefetching schemes (Normalized to baseline)

is to dynamically control the number of active warps for
mitigating excessive cache contention [14]. Warp throttling
techniques are effective in mitigating cache contention but
still such techniques do not fully consider characteristics
of each static load. For instance, first two loads (0x250,
0x230) of SRAD have #L/#R value of around 1, meaning all
memory references demand different cache lines. Hence, it
is clear that those two loads have very high miss rate of 99%.
Meanwhile, in the case of the third load (0x350) #L/#R of
0.52, which implies only half of the cache accesses request
unique cache lines; however, similar to the first two loads
the third load also shows miss rate of 99%. We surmise
that cache lines accessed by the third load are evicted by
the other two loads, which reduces opportunity improving
cache hit rate of the third load. In Section V, we will provide
detailed evaluation using warp throttling techniques.

In addition, Table I presents stride characterization of
each of the static loads. For a pair of accesses, the stride
is calculated by dividing the difference of the two addresses
by the difference of the warp IDs. An ID of a warp is defined
as the index of the first thread divided by warp size (32). We
show the stride values only for the most frequently observed
stride for each load. The Stride column of Table I shows the
most common stride value and %Stride column indicates
the fraction of the most frequent stride over the accesses
generated by that static load.

While some static loads exhibit low memory locality,
they show a very strong stride behavior. For instance, the
first two loads of SRAD have high #L/#R value implying
no memory locality, however the loads have strong stride
behavior. 78.2% and 75.0% of accesses from the two loads
have the regular stride value of 16,384.

C. GPU Prefetching Opportunities

Strong stride behavior enables prediction of future ad-
dresses, which makes prefetching a desirable option [25],
[26], [27], [28], [29], [30]. In particular, when the application
has neither temporal nor spatial locality, L1 data cache can
be repurposed as a buffer for storing prefetched cache lines.

We analyze two state-of-the-art GPU prefetching meth-
ods. STRide prefetching (STR) [20], [21] uses a table in
which each entry stores the PC address of each static load
instruction and a base memory address and stride value.
The stride calculation is done for each load instruction.
Spatial Locality Detection based prefetching (SLD) [10] is
the macro block-based prefetching method. A macro block
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Figure 4. Early eviction ratio of STR prefetchers

consists of consecutive four cache lines. If two lines of the
block are accessed, the SLD prefetcher will automatically
generate prefetch requests for the remaining two lines in the
same macro block.

We combined STR and SLD prefetchers with four of the
existing warp scheduling techniques, Prefetch-Aware (PA)
[10], GTO [14], MASCAR [15], and CCWS [14]. Figure
3 shows the speedup achieved with various combinations
of scheduling and prefetching techniques. CCWS+STR per-
formed best and shows 17.5% performance improvement
compared to the baseline. PA+SLD shows the largest im-
provement of 9.4%.

We observe that SLD shows less speedup than STR in all
schedulers except PA. Macro block prefetching in SLD is
often too aggressive because the prediction is correct only
when the access stride is in the range of two cache blocks
which are grouped in the same macro block. Assuming 128
byte line size of our baseline GPU, SLD can cover strides
less than 256 bytes. Meanwhile, the per-load stride detection
used in STR can correctly predict an arbitrarily large stride
value, and as shown in Table I the detected stride value is
often larger than two cache lines. As a result STR performs
better than SLD.

The small cache in GPUs makes prefetching more chal-
lenging. Under severe cache contention, prefetched cache
lines might be evicted by other accesses. We measure
the frequency of such early evictions. Figure 4 shows the
fraction of early evictions over the total prefetches issued
using the combinations of STR prefetcher and the warp
schedulers. Here we counted only correctly predicted cache
lines as part of the total prefetches issued. In CCWS+STR
which performed the best, 13.0% of correctly prefetched
cache lines are evicted earlier than demand request. In case
of PA+STR, GTO+STR, and MASCAR+STR, the early
eviction ratio of 14.2%, 16.0%, and 15.2% are obtained.
This implies additional performance improvement can be
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Figure 5. GPU architecture with APRES

possibly achieved by reducing early evictions. Thus the
goal of this work is to reduce the early eviction rate while
taking advantage of the cache access characterization of
static loads.

IV. APRES ARCHITECTURE

Our proposed technique, APRES, cooperatively oper-
ates warp scheduling with prefetching to improve cache
efficiency. Figure 5 illustrates a GPU pipeline with two
additional modules necessary to implement APRES.

The first module is the Locality Aware Warp Scheduler
(LAWS) which we propose in this paper. LAWS is an
advanced greedy scheduler which groups warps and then
tries to orchestrate their progress such that a group of warps
reach the same memory access instruction within a small
time window. For this purpose, LAWS uses a scheduling
queue which stores warp IDs in the priority order. The
next issued warp is selected from the head of the queue.
This greedy scheduling method implies that only a group
of leading warps will be prioritized and executed ahead
of the other remaining warps. Whenever any instruction is
issued from the warp that is at the queue head, it may
not be possible to continuously issue further instructions,
particularly any read-after-write dependent instruction, from
that warp due to pipeline delay. This latency depends on
pipeline organization but without loss of generality we can
assume 8 cycles [2]. Assuming 8 cycle latency, during the
next 8 cycles, 7 more warps will be issued. As a result, 8
warps will be scheduled in a round robin fashion and all
instructions are issued from these eight warps in a greedy
manner. By prioritizing a group of eight warps, a smaller
working set is accessed in a given time window and that
will eventually reduce cache misses.

The first observation LAWS exploits is the fact that each
static load across different warps exhibits the same cache
behavior. For instance, if a load Y in warp A hits in cache,
then the same load Y in warp B is also likely to hit in the
cache if warp B is scheduled immediately after warp A. The
problem is how to possibly group warps that will execute
the same load instruction in the near future. LAWS solves
this problem by grouping warps that executed the same static
load previously. The key observation here is that GPU warps
share the same kernel code, and tend to execute a similar
sequence of instructions. In the above example, assuming
warp A executed load X first and load Y next and another
warp B executed load X, then we can expect warp B will
execute load Y soon. We refer to the PC of load X as the
LLPC (last load PC) of warp A and B. LAWS groups warp

Figure 6. Warp execution with LRR, LAWS, and APRES

A and B when they share the same LLPC (load X in this
example). As soon as the warp A issued load Y then warp B
is grouped with warp A. Consequently, grouping with load
X produces the same result as grouping with load Y.

The second observation, as discussed in Section III,
LAWS exploits is that some loads have very high memory
locality across different warps and such loads are likely to
hit in cache. Since LAWS already groups warps based on
the fact that they are likely to execute the same loads within
a short time interval, it is then feasible to exploit the fact
that if one load from a warp hits in the cache the same static
load from the second warp will also hit in the cache.

The second part in Figure 6 shows an illustration how
LAWS is able to group warps to reduce cache misses. For
illustration purpose, we assume all addresses in the figure
are mapped to the same cache block. Also, we assume all
warps execute the same sequence of load instructions (load
PC of 100, 200, and 300). When the address 1000 demanded
by Warp 0 hits the cache (black rectangular), LAWS predicts
that Warp 3 is going to execute the same PC 100 and it may
also access the same data. Then, LAWS issues Warp 3 ahead
of the other warps. We will describe shortly how LAWS is
able to detect that Warp 0 and Warp 3 are about to execute
the same static load instruction.

Our observations in Section III also showed that some
loads do not exhibit any reuse. Hence, if a load from one
warp exhibits little reuse, the same observation will hold
for that load when executed in a second warp. So the last
problem is how to determine the type of the next load (high
locality or stride based references). To determine load type,
we use the cache access result of the first warp that executes
the load in a group (head warp) as a proxy of the cache
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Figure 7. LAWS architecture

behavior of all warps in the group. This is possible because
the load type is consistent across warps. If the head warp hits
the cache, then LAWS moves all warps in the group to the
front of the queue to execute them closely in time. For the
high locality load the grouped warps should be prioritized
because they expected to hit the cache. If the head warp
misses the cache all warps in the group are moved to the
tail of the queue to give them lowest priority.

Although the head warp missed the cache, there are
opportunities to prefetch cache lines of the other warps
in the same group when the grouped load is a strided
type. Based on this observation, APRES proposes a grouped
prefetching technique, namely Scheduling Aware Prefetching
(SAP). Once the head warp misses the L1 cache, SAP
generates the prefetch requests for all the other warps in the
same group. Utilizing stride behavior, SAP is able to predict
the address accessed by other warps in the group, using the
base address from the warp that missed in the cache. APRES
targets to maximize the effect of prefetching by cooperation
between SAP and LAWS. After SAP determines which
warps are eligible to prefetch, LAWS gives prefetching target
warps high priority. This scheduling policy minimizes early
evictions by merging as many as possible demand requests to
the corresponding MSHR entries generated by prefetching.
Once a demand request is merged, the target warp can
quickly access the prefetched cache line after the prefetched
data arrives.

The bottom most part of Figure 6 illustrates how APRES
combines LAWS and SAP together. In this example, Warp
1 and Warp 2 execute the load instruction at PC 200.
They access the demand addresses of 12000 and 13000,
respectively. When Warp 2 issues the load at PC 200, from
the demand addresses of Warp 1 and Warp 2 a stride value
of 1000 is computed. At the same time, LAWS groups Warp
0, 2, and 3 because they all have the same LLPC of 100.
If the SAP recognizes that PC 200 is a striding load then it
initiates a prefetch for Warp 0 and 3. In this example, the
prefetcher generates a prefetch request to fetch the data in
the memory address 11000 for Warp 0. After that, Warp 0,
which is targeted for prefetch, is scheduled ahead of Warp
1. This execution makes the demand access of Warp 0 is
merged to the prefetch request when it issues a load. If the
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Figure 8. Example of warp grouping in LAWS

warp scheduler issues Warp 1 ahead of Warp 0 as shown
in the LRR case, the prefetched data may not be properly
accessed by Warp 0 since it is evicted by the line fetched by
Warp 1. APRES reduces cache eviction for the contended
cache line, resulting in performance improvement.

A. Locality Aware Warp Scheduling
Figure 7 shows the structure and operation of the proposed

LAWS. As discussed earlier, the warps which previously
executed the same static long-latency load are required to be
grouped together. For this purpose, the grouping logic tracks
the last long-latency load instruction for each warp. We
consider all global memory loads as long latency regardless
they actually hit or missed the cache. This information is
managed by the Last Load Table (LLT); LLT is indexed by
the warp ID and each LLT entry records the last load PC
(LLPC) of each warp. A warp group is formed when a long-
latency load instruction is issued from a warp. When a long
latency load is issued LAWS first reads LLPC of the issued
warp from the LLT. To determine which warps should be
grouped, LLT is searched to find all warps whose LLPC
matches the LLPC of the issued warp.

The warps with a matching LLPC are grouped with the
current warp and the grouping information is stored in Warp
Group Table (WGT). Each WGT entry indicates a warp
group and each entry is a 48-bit vector assuming 48 warps
are accommodated per SM. Each bit that is set in the vector
indicates that the corresponding warp ID is part of that
group.

As soon as a long latency load is issued, all warps from
the corresponding warp group are identified using the WGT.
LAWS then schedules warps based on the feedback from
Load Store Unit (LSU) and the SAP prefetcher. When a load
is processed in the load store unit, warp ID of the current
load, the associated warp group ID, and cache hit status of
the load are sent to the scheduler. The scheduler first looks
up WGT using the received group ID to find warps in the
same group. If the access hits the cache, then LAWS moves
all warps in the group to the head of the queue. If the access
missed the cache, then LAWS moves all warps in the group
to the tail of the queue. After group prioritization is done,
the group information is invalidated from WGT.
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Figure 9. SAP architecture

Figure 8 illustrates an example of LLT management and
warp grouping. When a load at 0x20 issued from Warp 0,
LAWS searches LLT to find all warps whose LLPC is 0x10.
In this illustration, Warp 2 and 3 are grouped together with
Warp 0. Then the LLT entry of Warp 0 is updated to 0x20,
which is the PC of the next issued load. Figure 8 shows
two cache access scenarios after Warp 2 and 3 are issued.
In this example Warp 0,2,3 are grouped according the last
load PC. After Warp 0 hits the L1 cache Warp 2 and 3 are
prioritized. Otherwise, Warp 0, 2, and 3 are moved to the
tail of the scheduling queue.

LAWS also can trigger prefetch by sending relevant
information to the SAP. If a cache miss is received from
the load store unit, before clearing group information, the
list of warps in the missed group is sent to the prefetcher.
Prefetch requests are generated for a subset of warps in the
group. LAWS then moves the received prefetch target warps
to the queue head, so that these warps are prioritized.

B. Scheduling Aware Prefetching
Figure 9 describes the organization of the SAP prefetcher.

SAP consists of a Prefetch Table (PT), a Warp Queue (WQ),
and a demand request queue. PT stores necessary history of
the previous load executions. The information includes the
PC address, the warp ID which lastly issues the load, and the
memory address. Also, each PT entry stores the stride value
calculated from the two most recent memory addresses. WQ
stores the warp IDs which are part of the group.

When a demand request misses in L1 cache, LAWS sends
all of the warp IDs which belong to the same group of
the warp which caused the miss to the prefetching engine.
The warp IDs of the group are stored in WQ. The memory
address of the missed request is stored in the demand request
queue. If multiple requests are generated by a warp, then
only the address requested by the lowest thread ID is stored
in the demand request queue. SAP then initiates prefetch
request generation.

Figure 9 shows an example after Warp 2 issues a load
instruction (PC of 200) and generates a memory access
request on memory address 2000. SAP searches a corre-
sponding PT entry with the PC address. In this example,
the warp ID in the entry found is 10 and the stride value is

Table II
HARDWARE COST OF APRES

Module Cost
LAWS 4B×48 (LLT) + 48b×3 (WGT)
SAP 8B×32 (DRQ) + 1B×48 (WQ)

+ (4B+1B+8B+8B)×10 (PT)
Total 724 Bytes

100. First of all, SAP prefetches only when the inter-warp
stride currently calculated matches to the value stored in the
corresponding entry. The calculated stride in this example
is 100; the previous address 2800 (from Warp ID 10) and
the current address is 2000 (from Warp ID 2). Therefore,
the current stride matches the stored stride value for warp
10 and thus prefetch requests are issued based on the stride
value and base address stored in the table. If the stride values
mismatch, then prefetching is not initiated at that instance
and the stride in PT is replaced with the newly calculated
value.

In the example of Figure 9, SAP generates a prefetch
request for the warps in WQ. For the first warp (Warp 1),
the difference of warp IDs is 1 - 2 = -1 and the stride is
100, and the prefetch address is calculated as 2000 + (-1)
* 100 = 1900. After SAP generates a prefetch request, it
sends the prefetched warp ID back to LAWS so that LAWS
can prioritize the warp.

C. Hardware Overhead

We estimate the additional hardware cost of APRES as
shown in Table II. In the GPU architecture we use, it is
assumed that a maximum of 48 warps are allocated per
SM. To implement APRES, total 724 bytes for each SM
are required. In LAWS, LLT requires 48 4-bytes elements
to store the PC addresses. We set the number of entries in
WGT to 3, which is equal to the number of pipeline stages
from the issue stage to the execute stage. Three entries in
WGT can cover all in-flight load instructions in the GPU
pipeline.

SAP stores all memory addresses which are requested
from a load instruction. Since a load can generate 32 requests
at most when an uncoalesced access occurs, we set the size
of the Demand Request Queue (DRQ) to 32. An entry in PT
consists of a 4-byte element to store a PC address, an 1-byte
element to store the warp ID, an 8-byte element to store a
memory address, and an 8-byte element to store a stride. PT
contains 10 entries to store the information about frequently
executed load. WQ consists of 48 1-bytes elements, so that
it requires 48 bytes.

We estimate the area overhead of APRES using CACTI
[31], similar to the previous works [15], [32]. Compared
to 32KB and 8-way set-associative L1 data cache, which is
used in our evaluation, the additional hardware required in
APRES is 2.06% of that cache. For address calculation, SAP
requires 4 integer adders, 1 integer multiplier, and 1 integer
divider. The overhead of those units is negligible compared
to Fused Multiply-Add (FMA) units in CUDA cores.
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Figure 10. Performance comparison of LAWS and various prefetching techniques (Normalized to baseline)

Table III
SIMULATION CONFIGURATION

GPU Core 15 SMs, 1.4 GHz, SIMD width: 32
Max. concurrent 48 active warps

Warp Scheduler LRR/GTO/CCWS/MASCAR/PA
Prefetcher STR/SLD

L1 Data Cache 8-way, 32 KB, 128B line, 64 MSHRs
L2 Shared Cache 8-way, 768 KB, 128B line,

200 cycles latency
DRAM 6-partitioned, 924MHz,

440 cycles latency
Memory Request Request coalescing,

Merging Request merging in MSHR
Branch Control Immediate post dominator

Baseline LRR without prefetching
APRES LAWS+SAP

V. EXPERIMENTAL RESULTS

A. Methodology

We used GPGPU-sim v3.2.2 [33]. The detailed simulation
configuration is described in Table III. Also, we used the
power model from GPUWattch [34]. We select five cache-
sensitive applications, five cache-insensitive applications,
and five compute-intensive applications, respectively. The
applications we use (listed in Table IV) are from CUDA
Software Development Kit (SDK) [35], Parboil benchmark
suite [36], and Rodinia benchmark suite [37].

B. Performance of APRES

Figure 10 compares IPC of the five techniques. For
comparison, we used both CCWS and CCWS combined with
the STR prefetching. CCWS improves IPC by 12.8% across
15 benchmarks. LAWS alone improves IPC by 14.0%.
Combined with STR prefetching, as discussed in Section
III-C, CCWS+STR shows 17.5% of IPC improvement.
Even without prefetching, LAWS performed better than
CCWS+STR in LUD, SRAD, PF, and CS. LAWS+STR,
which is simply using the basic stride prefetching on top
of LAWS, shows even higher improvement up to 18.8%.
APRES which coordinates LAWS and SAP together, shows
highest IPC improvement of 24.2%.

On cache-sensitive applications, APRES achieves 44.0%
speedup while CCWS+STR provides 38.3% speedup.
APRES outperforms CCWS+STR in all benchmarks, except

Table IV
BENCHMARK APPLICATIONS

Application Abbr. Suites
Memory-intensive applications
(a) Cache-sensitive applications

Breath-First Search BFS Rodinia
MUMmerGPU MUM Rodinia

Needleman-Wunsch NW Rodinia
SParse-Matrix dense-Vector multiplication SPMV Parboil

KMeans KM Rodinia
(b) Cache-insensitive applications

LU Decomposition LUD Rodinia
Speckle Reducing Anisotropic Diffusion SRAD Rodinia

PArticle filter PA Rodinia
HISTOgram HISTO Parboil

Back Propagation BP Rodinia

Compute-intensive applications
PathFinder PF Rodinia

ConvolutionSeparable CS CUDA
Stencil ST Parboil

HotSpot HS Rodinia
ScalarProd SP CUDA

KM. As discussed in Section III-B, KM suffers from ex-
cessive cache contention because of its huge working set
size. CCWS reduces the number of active warps to increase
effective cache size per thread. Without forcibly limiting the
number of active warps, APRES solves this problem by more
cleverly rearranging warps to be more cache friendly. But
even with the improved scheduling it is still not as effective
as completely eliminating the need for larger cache by
reducing the number of active warps. Thus APRES achieves
119.6% of speedup, while CCWS shows 132.0% speedup,
CCWS+STR shows 144.8% speedup.

On cache-insensitive applications, APRES achieves
20.4% performance improvement compared to the baseline
GPU. Also, APRES shows 8.5% better performance than
CCWS+STR for cache-insensitive applications. In the case
of SRAD, LAWS gains 31.1% of speedup and APRES
achieves 40.0% speedup. According to Table I, both high
locality and strided loads coexist in SRAD. Thus, warp
grouping and scheduling performed in LAWS is highly
effective in improving L1 cache hits by separating two
loads. More than 75.0% of requests have regular stride, as
a result prefetching combined with LAWS achieves higher
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Figure 11. Cache hit and miss breakdown comparison (B: Baseline, C: CCWS, L: LAWS, S: CCWS+STR, A: APRES)
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Figure 12. Early eviction ratio comparison

performance with APRES.

On compute-intensive applications, APRES shows more
than 15% of performance improvement in CS and SP
compared to the baseline GPU, while LAWS alone improves
by 8.0%. Both CS and SP show regular memory access
pattern and have low cache line reuse rate, thus prefetching
of APRES contributed more to speedup than scheduling.

C. Impact on Cache

In this subsection, we analyze how APRES impact on the
L1 data cache. We measured cache hit and miss ratios to
observe how well the cache captures memory access locality.
We divided cache hits into hit-after-hit and hit-after-miss. A
hit-after-hit is a continuous cache hit. On the other hand, a
hit-after-miss is a cache hit after a cache miss happens. Hit-
after-hit ratio shows the effect of warp grouping by LLPC
in LAWS. Also, we divided cache misses into cold miss and
“capacity and conflict misses”, using the same methodology
presented in Section III.

Figure 11 shows the breakdown of L1 data cache uti-
lization in the baseline GPU, CCWS only, LAWS only,
CCWS+STR, and APRES. Across all 15 benchmarks,
LAWS shows 3.0% higher hit-after-hit ratio than CCWS.
In the applications which show frequent cache hits, such as
BFS, SPMV, LUD, SRAD, and PA, LAWS shows more than
10% of hit-after-hit ratio compared to CCWS. Also, LAWS
shows higher total cache hit ratio in these applications. The
warp grouping method in LAWS successfully improves the
cache hit ratio by increasing continuous cache hits. This
effect is also shown in APRES. APRES shows the best hit-
after-hit ratio, which is 4.1% better than CCWS+STR.

Moreover, for all benchmarks, APRES shows 10.3% less
cache miss rate than the baseline GPU and 5.9% less cache
miss rate than CCWS+STR. On cache-sensitive applications,

APRES reduces average cache miss by 14.5% and 3.9%
compared to the baseline and CCWS+STR, respectively.

APRES reduces capacity and conflict misses through
LAWS and reduces cold miss through SAP. We can further
analyze the additional cache miss reduction achieved by SAP
comparing LAWS and APRES results. There is a clear trend
that on top of miss reduction achieved with LAWS, cold
misses further reduced with SAP. For instance, in the BFS
application, APRES reduces the capacity and conflict misses
by 11.0%. As discussed in Section III, BFS shows frequent
inter-warp cache hits, and LAWS makes the necessary cache
line alive for a long time by prioritizing warps that will
access the cache line. SAP further reduced cold misses of
BFS less than half of the baseline. APRES achieves miss
reduction of 19.0% compared to the baseline, resulting in
speedup of 46.0%.

In cache-insensitive application category, APRES is ef-
fective in reducing capacity and conflict misses of LUD,
SRAD, and PA. As a result, large speedup up to 40.1%
(of SRAD) is achieved. In compute-intensive applications,
APRES reduces the cache misses in CS and SP. We clearly
see the speedup of CS and SP is due to reduced cold misses
by the effect of prefetching.

D. Impact on Early Eviction

We measured early eviction ratio with CCWS+STR and
APRES as shown in Figure 12. As presented in Section
III-C, early eviction ratio is defined as the fraction of cache
lines evicted before read by demand access. The average
early eviction ratio of APRES is 8.6% and CCWS+STR is
13.0%. APRES reduced early eviction by 4.4%. In a vast
majority of benchmarks, APRES consistently shows lower
early eviction ratio than CCWS+STR. On cache-sensitive
benchmarks, APRES outperforms CCWS+STR except NW.
In case of BFS, early eviction ratio is reduced from 18.4%
with CCWS+STR to 5.9% with APRES, indicating prefetch
efficiency is drastically improved. On cache-insensitive ap-
plications, APRES shows 9.9% of early eviction ratio, which
is 5.4% less than CCWS+STR. In the compute-intensive
application category, APRES is also effective in reducing
early evictions, particularly for the ST and SP benchmarks,
resulting in up to 17.2% (SP) speedup is observed.
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Figure 13. Average memory latency comparison (Normalized to baseline)
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Figure 14. Data traffic comparison (Normalized to baseline)

E. Impact on Memory Latency and Traffics

Figure 13 shows the ratio of average memory latency
of the baseline, CCWS+STR, and APRES. APRES reduces
the memory latency by 16.5% compared to the baseline,
and by 9.7% compared to CCWS+STR. In the applications
which APRES achieves the significant speedup, APRES
significantly reduces the memory latency. As APRES re-
sults in more cache hits, memory system is less congested
leading to latency reduction. In case of BFS, APRES shows
22.0% and 9.6% less memory latency than the baseline
and CCWS+STR, respectively. In KM, both APRES and
CCWS+STR reduce the memory latency by 19.2% and
20.8% compared to the baseline. On SPMV, APRES reduces
the memory latency by 31.8%, which is due to increased
cache hits as shown in Figure 10. Considering cache miss
results as shown in Figure 11, we find that reducing capacity
and conflict misses by LAWS also reduces memory access
latency. In case of PA, CS, and SP, the memory latency of
APRES is reduced because of SAP not because of LAWS.

As GPU throughput is often limited by memory band-
width, ineffective prefetches may lead to performance degra-
dation. To analyze the impact of prefetching on data traffics,
we measured the amount of data moved from memory to SM
measured as the number of data bytes transferred. Figure 14
shows relative data traffics with the baseline, CCWS+STR,
and APRES. It appears the average traffics is decreased by
3.8% with CCWS+STR, and by 2.1% with APRES. Both the
STR prefetcher and SAP in APRES adopt adaptive scheme
that issues prefetch requests only when the detected stride
value shows regular pattern and the address prediction is
likely to be correct. As a result, ineffective prefetches are
minimized. As shown in the figure, the amount of traffics
appears to be similar to the baseline on both CCWS+STR
and APRES. In BP, APRES increases traffics by 16.4%, but
as shown in Figure 10, negative performance impact is not
observed.
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Figure 15. Dynamic energy consumption normalized to Baseline

F. Impact on Energy Consumption

As moving data is an energy hungry operation in GPU,
improving cache efficiency also improves energy efficiency.
We simulated energy impact of APRES. Additional energy
consumption of new blocks for APRES is also modeled. In
fact, the overhead of additional blocks was less than 3% of
the total energy. As presented in Figure 15, APRES reduces
10.8% of the dynamic energy compared to the baseline.
APRES reduces the energy consumption more than 15% in
BFS, KM, and SP. In case of ST, APRES increased energy
consumption because many prefetches are not effective and
as a result memory traffics and power consumption are
increased. However, even in this worst case the increased
energy consumption was less than 10%, and simply turning
off the prefetcher will prevent any energy waste due to
prefetching.

VI. RELATED WORK

Warp Scheduling Techniques: Warps in an SM are
scheduled by warp schedulers and the performance is influ-
enced by the scheduling policy. Loose Round Robin (LRR)
gives the equal priority to all warps [33]. While LRR is
good in terms of fairness, this scheduling policy tends to
make all warps reach the long latency memory operations
roughly at the same time. Thus, it may cause the perfor-
mance degradation due to memory contention and hardware
underutilization [17]. To overcome the drawbacks of LRR
scheduling, the two-level warp scheduler was introduced
[13]. The main contribution of two-level scheduling is that
warps are divided into multiple groups. A warp group is
swapped with another group of warps when all warps in the
currently active group reaches the long latency operations.
Thus, two-level scheduling can hide the long stalls since
another groups are issued and kept operated until warp stall
of a warp group is resolved. There are many schedulers
derived from two-level scheduling [8], [13], [17]

Recent studies have proposed various warp scheduling
techniques to improve the efficiency of memory system
utilization. Rogers et al. proposed a Cache-Conscious Wave-
front Scheduling (CCWS) to leverage the intra-warp locality
for efficient cache utilization [14]. We evaluated CCWS in
Section III-C and Section V. They also designed another
warp scheduling method which focuses to predict the cache
utilization in memory divergence situation [16]. Jog et al.
introduced another scheduling scheme improving the per-
formance by reducing the cache contention and enhancing
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the DRAM bank-level parallelism [9]. Sethia et al. pro-
posed a warp scheduling and a cache re-execution method
for the efficient utilization of memory hardware resource
to improve the memory-intensive workloads [15]. Lee et
al. recently introduced two warp scheduling techniques to
improve the performance balance between faster and slower
warps, which are critical to the overall performance [11],
[12].

Prefetching: Hardware prefetching schemes have been
widely adopted in CPUs for reducing effective memory
latency. There exist the stride prefetching and the stream
prefetching schemes. In case of stride prefetching, it detects
the regular memory access pattern and predicts the future
memory strides to be accessed [25], [26], [27]. It stores the
prefetched lines to the cache memory. On the other hand,
the stream prefetching schemes utilizes the external buffers
to store the prefetched data [28], [29], [30]. Different from
those two schemes, a probabilistic model of prefetching was
also introduced [38].

The prefetching studies for GPGPUs were introduced by
rising of GPUs’s utilization for general purpose applications.
Lee et al. proposed a many-thread aware prefetching scheme
considering massively parallel processing on GPUs [20].
The scheme consists of the inter-thread prefetching and per-
warp stride prefetching. Also, Sethia et al. introduced a new
approach of per-warp stride prefetching to reduce the power
consumption of GPUs. It helps to save the energy by reduc-
ing the number of active warps [21]. To address the poor
performance of irregular memory access, Lakshminarayana
et al. designed a prefetching scheme which is especially
focused on the graph applications [39]. The methodology
utilized the spare register file to store the prefetched data.
Moreover, it focused to exploit the invalid thread operations
by changing the valid load instruction executions.

Combined Warp Scheduling and Prefetching: Re-
cently, the approaches about combined warp scheduling and
prefetching scheme were proposed to improve the perfor-
mance of GPUs [9], [10]. It boosts up the GPU performance
by scheduling the warp groups, especially considering the
spatial locality to reduce the stalls from memory pipeline.
Also, the schemes choose the warp groups, which access
the different DRAM banks to avoid the memory traffic bias
problem. The approaches achieve the performance improve-
ment based on such efficient access of memory subsystem.
Also, their prefetching scheme brings the data in the same
row in the DRAM bank. Combining those techniques, they
succeed to operate the prefetching with little overhead of
memory traffic.

However, the prefetching techniques which are introduced
in those studies did not show the significant performance
improvement. They did not address early evictions of
prefetched data, while APRES target to reduce early eviction
by coordinating LAWS and SAP. Also, it is found that more
than 60% of late prefetching still exists in their experimental
results. We focus on those problems, and propose a solution
with more harmonic execution of the warp schedulers and
the hardware prefetchers considering the warp scheduling

and cache access status. The proposed architecture gives the
high scheduling priorities to the warps which are expected
to make cache hits or those which are selected as the
prefetching targets. The proposed prefetcher supports this
functionality by sending the IDs of warps after it generates
the prefetch requests for them.

GPU Cache Utilization: Since the cache size of GPU
is not sufficient for massive number of threads, many re-
searches proposed the techniques to utilize the cache more
efficiently [19], [40], [41], [42]. First, several researches
proposed the cache bypassing techniques. Chen et al. pro-
posed an adaptive cache management techniques [19]. They
proposed a new technique which combines the active warp
throttling and cache bypassing. Their cache bypassing tech-
nique is activated if the memory traffic congestion is detected
in the Network-On-Chip (NOC) level. The adaptive cache
management technique improves the GPU performance by
throttling the number of active warps to fit the working
set size to the data cache and properly skip the cache
utilization. This mechanism reduces the cache contentions.
Jia et al. proposed another cache utilization technique,
called MRPB [40]. This technique contains a novel memory
request ordering and a cache bypassing. MRPB finds the
conflicts between memory requests and prevents them by
reordering memory requests. Some of reordered memory
requests bypass the data cache if the stall is predicted. Tian
et al. designed a novel cache bypassing for GPUs [41].
The proposed technique determines the cache bypassing for
each static load. Xu at al. proposed a scheduling technique
to minimize memory and cache contention when multiple
applications are co-located in the same SM [42].

In addition, several recent studies have proposed various
novel on-chip local memory structures fit to the GPU ap-
plication characteristics. Gebhart et al. proposed a new on-
chip local memory structure [43]. It has a form of unified
memory structure between data cache, scratchpad memory,
and register file. The portion of each structure is determined
dynamically when a new GPU kernel is launched to GPU.
Such a portion is estimated based on the number of active
threads, dynamic instruction count, and the amount of off-
chip device memory accesses. Wang et al. introduced a
new cache management technique, called DaCache [44].
It consists of a new warp scheduling technique, a cache
replacement policy, and a cache bypassing method. Dacache
detects the loads which cause the memory divergence and
prioritizes the warps which issue the coherent load over
the warps which issue divergent loads. Komuravelli et al.
proposed a new on-chip local memory structure, Stash
[45]. Stash employs the advantages of both data cache and
scratchpad memory. Stash is globally addressable like data
cache and also available to reuse the data implicitly. With
this flexibility, it improves the GPU performance.

Without adding or redesigning GPU memory hierarchy,
APRES aims to fully utilize the existing data cache by
combining the warp scheduling and data prefetching by
better exploiting to the characteristics of static loads on GPU
applications.
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VII. CONCLUSION

This paper presents two important observations regarding
the cache access behavior of GPU loads. Using a detailed
per-load characterization we show that some loads access
only a small range of memory space, thus exhibit strong
locality. And the second category of loads have a large
memory footprint that is frequently accessed using a stride
access pattern. The characteristics are unique to each static
load regardless of warp IDs. We exploit these observations to
improve memory access bottlenecks in GPUs. We propose
the APRES architecture which consists of a new locality
aware warp scheduling and a new inter-warp prefetching
technique. The warp scheduler tries to group warps such that
all the warps in the group execute a particular load instruc-
tion within a short window of time, if that load instruction
is deemed to exhibit strong locality. Thus the proposed warp
scheduler enables multiple consecutive accesses to a cache
line before it is evicted. For loads that have a large memory
footprint the prefetcher tracks the inter-warp striding behav-
ior and is able to issue prefetches for different warps which
will execute the same static load which is currently being
issued. These two modules adaptively cooperate by sharing
information about prefetching target warps. APRES achieves
significant performance improvement over any combinations
of existing warp scheduling and prefetching techniques.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIP) (No. NRF-2015R1A2A2A01008281 and
No. NRF-2015R1C1A1A01053844), by SIC R&D Cen-
ter, LG Electronics Inc., and by the following grants:
DARPA-PERFECT-HR0011-12-2-0020 and NSF-CAREER-
0954211, NSF-0834798. W. W. Ro is the corresponding
author.

REFERENCES

[1] N. Chatterjee, M. O’Connor, G. Loh, N. Jayasena, and
R. Balasubramonia, “Managing dram latency divergence in ir-
regular gpgpu applications,” in High Performance Computing,
Networking, Storage and Analysis, International Conference
for (SC14), Nov 2014, pp. 128–139.

[2] S. Hong and H. Kim, “An analytical model for a gpu
architecture with memory-level and thread-level parallelism
awareness,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA ’09). ACM,
2009, pp. 152–163.

[3] O. Kayiran, A. Jog, M. Kandemir, and C. Das, “Neither more
nor less: Optimizing thread-level parallelism for gpgpus,” in
Proceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT ’13), Sept
2013, pp. 157–166.

[4] S.-Y. Lee and C.-J. Wu, “Characterizing the latency hiding
ability of gpus,” in 2014 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS ’14),
2014, pp. 145–146.

[5] K. Kim, S. Lee, M. K. Yoon, G. Koo, W. W. Ro, and
M. Annavaram, “Warped-preexecution: A gpu pre-execution
approach for improving latency hiding,” in 2016 IEEE 22nd
International Symposium on High Performance Computer
Architecture (HPCA ’16), March 2016, pp. 163–175.

[6] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram,
“Virtual Thread: Maximizing Thread-Level Parallelism be-
yond GPU Scheduling Limit,” in Proceedings of the 43rd
International Symposium on Computer Architecture (ISCA
’16), 2016.

[7] W. Jia, K. A. Shaw, and M. Martonosi, “Characterizing and
improving the use of demand-fetched caches in gpus,” in
Proceedings of the 26th ACM International Conference on
Supercomputing (ICS ’12). New York, NY, USA: ACM,
2012, pp. 15–24.

[8] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler,
W. J. Dally, E. Lindholm, and K. Skadron, “Energy-efficient
mechanisms for managing thread context in throughput pro-
cessors,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA ’11), 2011.

[9] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K.
Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Owl: Cooperative thread array aware scheduling techniques
for improving gpgpu performance,” in Proceedings of the
Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS ’13). New York, NY, USA: ACM, 2013, pp. 395–406.

[10] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das, “Orchestrated scheduling and prefetch-
ing for gpgpus,” in Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture (ISCA ’13).
New York, NY, USA: ACM, 2013, pp. 332–343.

[11] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “Cawa: Coordinated
warp scheduling and cache prioritization for critical warp
acceleration of gpgpu workloads,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture
(ISCA ’15). New York, NY, USA: ACM, 2015, pp. 515–
527.

[12] S.-Y. Lee and C.-J. Wu, “Caws: Criticality-aware warp
scheduling for gpgpu workloads,” in Proceedings of the
23rd International Conference on Parallel Architectures and
Compilation (PACT ’14), 2014, pp. 175–186.

[13] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt, “Improving gpu performance via
large warps and two-level warp scheduling,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-44). New York, NY, USA: ACM,
2011, pp. 308–317.

[14] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-
conscious wavefront scheduling,” in Proceedings of the 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO-45). Washington, DC, USA: IEEE Com-
puter Society, 2012, pp. 72–83.

[15] A. Sethia, D. A. Jamshidi, and S. Mahlke, “Mascar: Speed-
ing up gpu warps by reducing memory pitstops,” in 2015
IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA ’15), Feb 2015, pp. 174–185.

[16] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-
aware warp scheduling,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO-46). New York, NY, USA: ACM, 2013, pp. 99–110.

[17] M. K. Yoon, Y. Oh, S. Lee, S. H. Kim, D. Kim, and W. W. Ro,
“Draw: investigating benefits of adaptive fetch group size on

202202



gpu,” in 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS ’15), March 2015,
pp. 183–192.

[18] NVIDIA, NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110, 2012.

[19] X. Chen, L.-W. Chang, C. Rodrigues, J. Lv, Z. Wang,
and W.-M. Hwu, “Adaptive cache management for energy-
efficient gpu computing,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO-47), Dec 2014, pp. 343–355.

[20] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc,
“Many-thread aware prefetching mechanisms for gpgpu ap-
plications,” in Proceedings of the 43rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’10),
Dec 2010, pp. 213–224.

[21] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke, “Apogee:
Adaptive prefetching on gpus for energy efficiency,” in Pro-
ceedings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT ’13). Pis-
cataway, NJ, USA: IEEE Press, 2013, pp. 73–82.

[22] NVIDIA, NVIDIA GeForce GTX 980: Featuring Maxwell,
The Most Advanced GPU Ever Made, 2014.

[23] M. Rhu, M. Sullivan, J. Leng, and M. Erez, “A locality-aware
memory hierarchy for energy-efficient gpu architectures,” in
Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). New York,
NY, USA: ACM, 2013, pp. 86–98.

[24] C. Li, Y. Yang, H. Dai, S. Yan, F. Mueller, and H. Zhou,
“Understanding the tradeoffs between software-managed vs.
hardware-managed caches in gpus,” in 2014 IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software (ISPASS ’14), March 2014, pp. 231–242.

[25] T.-F. Chen and J.-L. Baer, “Effective hardware-based data
prefetching for high-performance processors,” Computers,
IEEE Transactions on, vol. 44, no. 5, pp. 609–623, May 1995.

[26] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed
prefetching in scalar processors,” in Proceedings of the 25th
Annual International Symposium on Microarchitecture (MI-
CRO ’92). Los Alamitos, CA, USA: IEEE Computer Society
Press, 1992, pp. 102–110.

[27] Y. Liu and D. Kaeli, “Branch-directed and stride-based data
cache prefetching,” in Computer Design: VLSI in Comput-
ers and Processors, Proceedings., 1996 IEEE International
Conference on (ICCD ’96), Oct 1996, pp. 225–230.

[28] N. P. Jouppi, “Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers,” in Proceedings of the 17th Annual International
Symposium on Computer Architecture (ISCA ’90). New York,
NY, USA: ACM, 1990, pp. 364–373.

[29] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as
a secondary cache replacement,” in Proceedings of the 21st
Annual International Symposium on Computer Architecture
(ISCA ’94). Los Alamitos, CA, USA: IEEE Computer
Society Press, 1994, pp. 24–33.

[30] S. Sair, T. Sherwood, and B. Calder, “A decoupled predictor-
directed stream prefetching architecture,” Computers, IEEE
Transactions on, vol. 52, no. 3, pp. 260–276, 2003.

[31] S. Thoziyoor, N. Muralimanohar, and J. H. Ahn, “Cacti 5.1,”
Hewlett-Packard Laboratories, Tech. Rep., 2008.

[32] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. An-
navaram, “Warped-compression: Enabling power efficient
gpus through register compression,” in Proceedings of the

42Nd Annual International Symposium on Computer Archi-
tecture (ISCA ’15). New York, NY, USA: ACM, 2015, pp.
502–514.

[33] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing cuda workloads using a detailed gpu simulator,”
in 2009. IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS ’09), April 2009,
pp. 163–174.

[34] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim,
T. M. Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy
optimizations in gpgpus,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture (ISCA
’13). New York, NY, USA: ACM, 2013, pp. 487–498.

[35] NVIDIA, NVIDIA CUDA SDK 4.0.

[36] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W.
Chang, N. Anssari, G. D. Liu, and W. W. Hwu, “Parboil: A re-
vised benchmark suite for scientific and commercial through-
put computing,” Center for Reliable and High-Performance
Computing, 2012.

[37] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heteroge-
neous computing,” in 2009. IEEE International Symposium
on Workload Characterization (IISWC 2009), Oct 2009, pp.
44–54.

[38] D. Joseph and D. Grunwald, “Prefetching using markov
predictors,” in Proceedings of the 24th Annual International
Symposium on Computer Architecture (ISCA ’97). New York,
NY, USA: ACM, 1997, pp. 252–263.

[39] N. B. Lakshminarayana and H. Kim, “Spare register aware
prefetching for graph algorithms on gpus,” in 2014 IEEE 20th
International Symposium on High Performance Computer
Architecture (HPCA ’14), Feb 2014, pp. 614–625.

[40] W. Jia, K. A. Shaw, and M. Martonosi, “Mrpb: Memory re-
quest prioritization for massively parallel processors,” in 2014
IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA ’14), Feb 2014, pp. 272–283.

[41] Y. Tian, S. Puthoor, J. L. Greathouse, B. M. Beckmann, and
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